
Arbitration-Free Consistency Is Available (and Vice Versa)
HAGIT ATTIYA, Technion - Israel Institute of Technology, Israel

CONSTANTIN ENEA, LIX - Ecole Polytechnique - CNRS - Institut Polytechnique de Paris, France

ENRIQUE ROMÁN-CALVO, University of Freiburg, Germany

The fundamental tension between availability and consistency shapes the design of distributed storage systems.

Classical results capture extreme points of this trade-off: the CAP theorem shows that strong models like

linearizability preclude availability under partitions, while weak models like causal consistency remain

implementable without coordination. These theorems apply to simple read-write interfaces, leaving open

a precise explanation of the combinations of object semantics and consistency models that admit available

implementations.

This paper develops a general semantic framework in which storage specifications combine operation

semantics and consistency models. The framework encompasses a broad range of objects (key-value stores,

counters, sets, CRDTs, and SQL databases) and consistency models (from causal consistency and sequential

consistency to snapshot isolation and bounded staleness).

Within this framework, we prove the Arbitration-Free Consistency (AFC) theorem, showing that an object

specification within a consistency model admits an available implementation if and only if it is arbitration-free,
that is, it does not require a total arbitration order to resolve visibility or read dependencies.

The AFC theorem unifies and generalizes previous results, revealing arbitration-freedom as the fundamental

property that delineates coordination-free consistency from inherently synchronized behavior.

CCS Concepts: • Theory of computation → Distributed computing models; • Computer systems
organization→ Availability.

Additional Key Words and Phrases: Distributed Systems, Availability, CAP Theorem

ACM Reference Format:
Hagit Attiya, Constantin Enea, and Enrique Román-Calvo. 2026. Arbitration-Free Consistency Is Available

(and Vice Versa). Proc. ACM Program. Lang. 10, POPL, Article 41 (January 2026), 63 pages. https://doi.org/10.

1145/3776683

1 Introduction
Distributed storage systems enable reliable access to objects by replicating them across a wide-area

network. Replication is essential for tolerating faults in the system (e.g., machines that crash,

network partitions) and for decreasing latency. In such systems, it is crucial to maintain a trade-off

between availability (ensuring prompt access to data) and preserving consistency, even in the

presence of communication delays. The CAP theorem [13, 18] shows that a key-value store cannot

provide strong Consistency (atomicity) while maintaining Availability and tolerating network

Partitions at the same time. PACELC [1, 19] refines CAP by adding the case of a connected network

where strong consistency cannot be achieved with low latency.

Authors’ Contact Information: Hagit Attiya, Technion - Israel Institute of Technology, Haifa, Israel, hagit@cs.technion.ac.il;

Constantin Enea, LIX - Ecole Polytechnique - CNRS - Institut Polytechnique de Paris, Palaiseau, France, cenea@lix.

polytechnique.fr; Enrique Román-Calvo, University of Freiburg, Freiburg im Breisgau, Germany, calvo@informatik.uni-

freiburg.de.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART41

https://doi.org/10.1145/3776683

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

https://orcid.org/0000-0002-8017-6457
https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0005-7539-2330
https://doi.org/10.1145/3776683
https://doi.org/10.1145/3776683
https://orcid.org/0000-0002-8017-6457
https://orcid.org/0000-0003-2727-8865
https://orcid.org/0009-0005-7539-2330
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776683

41:2 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Many modern storage systems sacrifice strong consistency for availability (or low latency) and

ensure weaker notions of consistency. There is plethora of weak consistency models [14] (or

isolation levels [3] in the context of transactions) that correspond to different trade-offs with respect

to availability. Other modern storage systems relax the semantics of the objects they support, e.g.,

multi-value registers, where a get arbitrarily returns a previously stored value.

Given that the guarantees of a storage system are captured through the subtle combination of its

consistency model and its object semantics, a natural question to consider is:

What class of consistency models support available implementations of which objects in
the presence of network partitions?

Previous results provided only partial answers to this question. The aforementioned CAP theorem

only shows a negative result that an Atomic (Linearizable) Key-Value Store is not included in this

class. Attiya et al. [7] identify a consistency model, called Observable Causal Consistency (OCC),

that is not included in this class; but only for particular objects, Multi-Value Registers. We remark

that Causal Consistency, which is strictly weaker than both of them, is in the class.

The goal of this paper is to give a precise answer for the question raised above. To do so, we

rely on a very expressive framework for defining consistency models and object semantics that

builds on previous work [14]. Using this framework, we give a tight characterization of models and

objects that can be expressed within this framework and that support available implementations.

Before explaining our characterization, we outline our framework.

A framework for defining storage specifications. A storage system is composed of a collection of

objects that can be read or modified using a set of operations (the API of the storage). Specifications

are expressed in terms of an abstract model of storage executions, which is defined as a set of

binary relations among events—each event corresponding to an invocation of an operation on an

object. These relations capture typical control-flow dependencies–such as invocations occurring at

the same replica–data-flow dependencies–where certain updates affect the result of a query–and

a total order used as a "tie-breaker" to fix an order between concurrent invocations. The latter is

called arbitration order and it has an important role in our main result.

In a distributed storage system, implementations typically rely on communication protocols to

share the effects of invocations among all replicas. They also use specific algorithms to merge the

effects received from other replicas into the local replica’s state. As a result, each invocation can be

viewed as executing within a specific context–that is, the set of prior operations, including those
received from remote replicas.

A storage specification defines the expected behavior of the system. It consists of two parts:

• a consistency model, restricting the possible contexts in which each invocation may execute.

• an operation specification, describing the allowable effects of an invocation, given its context.

A consistency model consists of a set of visibility formulas saying when an invocation belongs

to the context of another invocation. This “being in the context of” binary relation is defined

via combinations of the binary relations mentioned above (by standard composition, union, and

transitive closure). For instance, a visibility formula may state that all prior invocations at the same

replica should be included in the context. An operation specification consists of a set of functions

that characterize the read and write behavior of an invocation, in particular, the value written by

writes. Note that this value is not always fixed since we allow operations that read and write at the

same time, e.g., Compare-and-Swap which writes a given object only if the old value equals some

other value given as input. We also allow SQL transactions whose effects are even more complex.

We show that our framework covers many possible storage specifications, including Last-Writer-

Wins and Multi-Value Key-Value stores, Key-Value stores with Compare-and-Swap operations,

Key-Value stores with counters, as well as transactional and non-transactional SQL stores, and many

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:3

PUT(𝑥,1);

a = GET(𝑦);

PUT(𝑦,2);

b = GET(𝑥);

(a) Sequential Consistency
and PUT, GET operations.

PUT(𝑥, 1);

...

PUT(𝑥, K);

a = GET(x);

PUT(𝑦, 1);

...

PUT(𝑦, K);

b = GET(y);

(b) Bounded Staleness and
PUT, GET operations.

FAA(𝑥, 1); FAA(𝑥, 2);

(c) Sequential Consistency
and FAA operations.

FAA(𝑥, 1);

FAA(𝑦, 3);

FAA(𝑦, 2);

FAA(𝑥, 4);

(d) Prefix Consistency and
FAA operations.

Fig. 1. Different litmus programs with two concurrent sessions showing the absence of available implementa-
tions for selected pairs of consistency models and operation specifications.

possible consistency models including Return-Value Consistency, Causal Consistency, Sequential

Consistency, and transactional isolation levels like Snapshot Isolation and Serializability.

The arbitration-free consistency (AFC) theorem. Our main result states roughly, that a storage sys-

tem has an available implementation if and only if the visibility formulas that define its consistency

model exclude any meaningful use of the total arbitration order. Such a consistency model is called

arbitration-free. As in previous works, we consider an implementation to be available if operations
can be answered immediately on every replica (without waiting for messages from other replicas).

The proof of the AFC theorem is quite challenging, one reason being the very expressive and

abstract specification framework that we consider. Proving that there exist available implementa-

tions for arbitration-free consistency models is the easier part since arbitration-freeness implies

that the model is weaker than causal consistency, and the latter supports available implementa-

tions [9, 10, 25, 26]. The opposite direction is much more difficult and is described in two stages.

We first consider a basic case, in which operations read and/or write a single value from/to a

single object. This yields a reasonably simple proof, while still covering consistency models such as

Return-Value Consistency, Causal Consistency, Prefix Consistency and Sequential Consistency, and

objects such as a key-value store, with ordinary put / get operations or extended with Fetch-and-Add

and Compare-and-Swap operations.

Then, we consider a general class of objects where operations can read and/or write multiple

objects at the same time, and reads may compute their return value from multiple updates. In this

very generic context, we need to introduce some number of restrictions (assumptions) which are

however satisfied by all practical cases that we are aware of (see Section 7). This is to exclude

pathological cases that arise from starting with a very abstract formal model.

To summarize, we provide the first characterization of distributed storage formal specifications

that support available implementations which takes into account both consistency constraints and

the semantics of the implemented objects. At a high level, the key insight behind our result is that

in an asynchronous system, where replicas coordinate only through the exchange of messages, they

can establish at most a causal order between operations. The arbitration order, in contrast, is total: it

compares operations that are concurrent and therefore incomparable under causality. Determining

such a total order would require additional synchronization between replicas, coordination that

cannot be achieved in an always-available manner.

2 Motivating Examples
We illustrate the broad applicability of the AFC theorem through various storage specifications,

each reflecting different trade-offs between consistency and operation semantics. We argue about

the diversity of reasoning required and motivate the need for a unified framework.

As a starting point, we consider a standard key-value store with PUT and GET operations; PUT(𝑥, 𝑣)
writes the value 𝑣 to object (key) 𝑥 , and GET(𝑥) reads the latest1 value of object 𝑥 . As consistency
1
We assume a standard semantics based on the Last-Writer-Wins conflict resolution policy.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:4 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

model, we consider the standard Sequential Consistency (SC) whose formalization uses arbitration to

postulate an order in which different operations interleave. By the AFC theorem, the latter implies

that there exists no available implementation that ensures SC. Intuitively, the proof is based on a

litmus program like in Figure 1a. This program contains two concurrent sessions, each executed at

a different replica. Also, 𝑥 and 𝑦 are initially 0. An SC available implementation should allow an

execution in which, intuitively, the two replicas operate without exchanging anymessages, resulting

in both final get operations returning 0. However, this outcome violates sequential consistency, as

it cannot be produced by any interleaving of the operations—leading to a contradiction.

We remark that this argument proves a version of the CAP theorem that is stronger than the

one proved in [18]. The latter proof relies on the real-time ordering requirement that is embedded

in linearizability — a consistency model stronger than sequential consistency (cf. [21]).

Such a proof can be generalized to the case where PUT / GET operations are replaced for instance,

by ADD / CONTAINS operations on a set, i.e., PUT(𝑥, 𝑣) and GET(𝑥) in Figure 1a are replaced by ADD(𝑥)
and CONTAINS(𝑥) (and similarly for operations on 𝑦). As in the previous case, an SC available

implementation should allow an execution without exchange of messages, resulting in both final

CONTAINS operations returning false (the set does not contain the element), which is an SC violation.
On the other hand, if we consider a weaker consistency model, a straightforward variation of

the program in Figure 1a can not be used to prove non-existence of available implementations.

For instance, consider Bounded Staleness [28] a weakening of SC, which requires that each get

operation observes all preceding put operations (on the same object), except possibly the most

recent 𝐾 − 1, for some fixed value of 𝐾 . The put operations are still required to execute following

some fixed arbitration order as in SC (see Section 7.1 for a precise definition). This weakening for

𝐾 = 2 admits an execution of t he program in Figure 1a where both final get operations return 0

(the get operations may miss the only put in the program). Therefore, this program cannot be used

to show non-existence of available implementations. Instead, one can use the program given in

Figure 1b, which contains 𝐾 put operations in each session. One can follow now the same strategy

as above and show that an execution without exchange of messages makes both get operations

return 0, and this violates bounded staleness.

If we weaken consistency even further and consider Causal Consistency (CC) [29], then the AFC

theorem will imply existence of available implementations (which is known [9, 10, 25, 26]).

Now, if we change the set of operations and consider a storage system with only Fetch-and-Add

operations (FAA(𝑥, 𝑣) returns the old value of 𝑥 and adds 𝑣 , atomically), then a proof for non-

existence of SC available implementations can be done using the program in Figure 1c with only

one FAA in each session. An execution without exchange of messages will imply that both FAA
return the initial value of 𝑥 , and this is a violation of SC.
If we weaken consistency to Prefix Consistency (PC) [16], then the previous program is not

suitable. An execution where both FAA in Figure 1c return the initial value of 𝑥 satisfies PC (see

section 4.1 for a formal definition). Instead, we need a litmus program like in Figure 1d which

contains two FAAs per session. Here, an execution where all FAAs return an initial value does not

satisfy PC. This program can also be used to show the non-existence of available implementations of

Parallel Snapshot Isolation (PSI) [30] or Conflict-preserving Causal Consistency (CCC), a consistency
model defined using the axioms Conflict and Causal from [11]. As a side remark, note that CCC is

equivalent to CC for the key-value store with PUT and GET operations presented at the beginning,

and therefore, there exists an available implementation for CCC in that case.

While these cases follow a broadly similar proof strategy, each demands distinct proof artifacts

(such as litmus programs) and tailored reasoning. The AFC theorem unifies these diverse arguments

within a common theoretical framework, grounded in a formalization of a wide class of storage

specifications encompassing all the examples above.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:5

3 Abstracting Storage Executions
We present an abstract model of distributed storage executions that includes the essential compo-

nents needed to define storage specifications. A distributed storage (or simply storage) replicates the

state of a set of objects over two or more nodes called replicas. We use Objs to denote the infinite

set of objects, ranged over 𝑥,𝑦, 𝑧, and Reps to denote the set of replica identifiers, ranged over 𝑟 , 𝑟1,

𝑟2. Objects are accessed using a set of operations which may write or return values in a set Vals.
An abstract execution records operation invocations along with a set of relations that represent

control-flow dependencies (two invocations executing on the same replica), and the internal

behavior of the storage. The internal behavior includes, broadly, the computation of object states

and the return values of invocations, as well as the communication between replicas. The first

concerns local computation within each replica, while the second pertains to communication

protocols or underlying network assumptions. To distinguish these two aspects, we first introduce

the concept of a history, which records only the data-flow dependencies relevant to characterizing

the local computation. An abstract execution is then defined as an extension of a history, enriched

with additional relations that abstract inter-replica communication.

3.1 Histories
The invocation of an operation on some replica is represented using an event 𝑒 = (id, r, op,wval,m)
where id is an event identifier, r is a replica identifier, op is an operation name, wval is a (partial)
mapping that associates an object 𝑥 with a value 𝑣 that this event writes to 𝑥 , and m is additional

metadata of the invocation. We use id(𝑒) rep(𝑒), op(𝑒), wval(𝑒), and md(𝑒) to denote the event

identifier, replica identifier, operation, written value mapping and metadata of an event 𝑒 , respec-

tively. We assume that every event 𝑒 accesses (reads or writes) a fixed finite set of objects denoted

as obj(𝑒). The set of events is denoted by Events. We assume that Events includes a distinguished
type of initial events that affect every object, representing the initial state of the storage.

Example 3.1. As a running example, we consider a Key-value Store with four types of operations:
PUT(𝑥, 𝑣) that writes 𝑣 to object (key) 𝑥 , GET(𝑥) that reads object 𝑥 , FAA(𝑥, 𝑣) that reads the value 𝑣 ′
of object 𝑥 and writes 𝑣 ′ + 𝑣 , and CAS(𝑥, 𝑣, 𝑣 ′), that reads 𝑥 and writes 𝑣 ′ iff the value read is 𝑣 . We use
faacas to refer to this storage (from the Fetch-and-Add and Compare-and-Swap operations).

A history contains a finite set of events 𝐸 ordered by a (partial) session order so that relates events
on the same replica, and a write-read relation wr (also known as read-from) representing data-flow

dependencies between events that update and respectively, read a same object. Histories contain an

initial event, init, that precedes every other event in 𝐸 w.r.t so. We consider a write-read relation

wr𝑥 ⊆ P(𝐸) × 𝐸 for every object 𝑥 ∈ Objs. The inverse of wr𝑥 is defined as usual and denoted by

wr−1𝑥 . We use wr : Objs → P(𝐸) × 𝐸 to denote the mapping associating each object 𝑥 with wr𝑥 .
For simplicity, we often abuse the notation and extend wr𝑥 and wr to pairs of events: we say that

(𝑤, 𝑟) ∈ wr𝑥 if𝑤 ∈ wr−1𝑥 (𝑟), and we say that (𝑤, 𝑟) ∈ wr if there exists an object 𝑥 s.t. (𝑤, 𝑟) ∈ wr𝑥 .

Definition 3.2. A history (𝐸, so,wr) is a finite set of events 𝐸 along with a strict partial session
order so, and a write-read relation wr𝑥 ⊆ P(𝐸) × 𝐸 for every 𝑥 ∈ Objs such that

• 𝐸 contains a single initial event init, which precedes every other event in 𝐸 w.r.t. so,
• ∀𝑒, 𝑒′ ∈ 𝐸 \ {init}, so orders 𝑒 and 𝑒′ iff rep(𝑒) = rep(𝑒′),
• the inverse of wr𝑥 is a total function for every 𝑥 ∈ Objs, and
• so ∪ wr is acyclic (here we use the extension of wr to pairs of events).

Example 3.3. Figure 2 shows two examples of histories of the storage faacas presented in Example 3.1.
For readability, we omit replica identifiers from events. The wr dependencies can be used to explain the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:6 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

{𝑥 : 0}
init

FAA(𝑥, 1)
𝑒0

CAS(𝑥, 0, 2)
𝑒1

soso wr𝑥
wr𝑥

(a) 𝑒0 reads 0, writes 1; 𝑒1 reads 1 and does not write.

{𝑥 : 0}
init

FAA(𝑥, 1)
𝑒0

CAS(𝑥, 0, 2)
𝑒1

wr𝑥 soso wr𝑥

(b) 𝑒0 reads 0 and writes 1; 𝑒1 reads 0 and writes 2.

Fig. 2. Two examples of histories for faacas. Arrows represent so and wr relations. The initial event init
defines the initial state where 𝑥 is 0. Events 𝑒0 and 𝑒1 execute a fetch-and-add and compare-and-swap
respectively, at different replicas.

“local” computation in those invocations as follows: (1) on the left, the CAS should fail (not write to 𝑥)
because it reads the value written by the FAA which should be equal to 1 since FAA reads the initial
value, (2) on the right, the CAS should succeed (write to 𝑥) because it reads the initial value (the FAA
will concurrently write 1 to 𝑥).

We say that the event 𝑤 is read by the event 𝑟 if (𝑤, 𝑟) ∈ wr. Since we assumed that wr−1𝑥 is a

total function, we use wr−1𝑥 (𝑟) to denote the set W such that (W, 𝑟) ∈ wr𝑥 . We use wr−1𝑥 (𝑒) = ∅ to

indicate that 𝑒 does not read 𝑥 (resp. wr−1𝑥 (𝑒) ≠ ∅ to indicate that 𝑒 reads 𝑥).

3.2 Abstract Executions
An abstract execution of a distributed storage is a history with a finite set of events 𝐸 along

with a relation rb ⊆ 𝐸 × 𝐸 called receive-before, and a total order ar ⊆ 𝐸 × 𝐸 called arbitration.
These relations are an abstraction of the internal communication behavior, i.e., the propagation of

operation invocations between different replicas and conflict-resolution policies. The receive-before

relation models information exchange between replicas and intuitively, an event 𝑤 is received-

before an event 𝑒 on a replica 𝑟 if 𝑤 has been propagated to replica 𝑟 before executing 𝑒 . The

arbitration order represents a “last-writer wins” conflict resolution policy between concurrent

events and the order in which events take effect in the storage for “strong” consistency models

such as Sequential Consistency or Serializability. This order may be ignored by weaker consistency

models, where a read is not required to read from the latest update that precedes it in arbitration

order, or by specific types of storage, e.g., CRDTs (see Section 7), where conflict resolution does not

rely on the arbitration order.

Definition 3.4. An abstract execution 𝜉 = (ℎ, rb, ar) is a history ℎ = (𝐸, so,wr) along with an
asymmetric, irreflexive relation receive-before rb ⊆ 𝐸×𝐸 and a strict total arbitration order ar ⊆ 𝐸×𝐸,
such that:
(1) propagated updates are not “forgotten” within the same replica: rb = rb; so∗2,
(2) events at the same replica or events that are read are necessarily received-before, and ar is

consistent with the receive-before relation: so ∪ wr ⊆ rb ⊆ ar.
𝜉 is called an abstract execution of ℎ.

The conditions above are naturally satisfied by storages where replicas execute in a single process,

values are not produced “out of thin air”, and the arbitration order is implemented using “consistent”

timestamps, i.e. timestamps that do not contradict Lamport’s clocks [23] or causality. This is the

case for implementations where “ties” between concurrent operations are solved based on replica

IDs (assumed to be totally ordered), or when using timestamps from a (partially-)synchronized

clock – which is most often the case in practice.

2
The symbol ; denotes the usual composition of relations

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:7

{𝑥 : 0}
init

FAA(𝑥, 1)
𝑒0

CAS(𝑥, 0, 2)
𝑒1ar rb arrb

ar

rb

(a) Abstract execution of the history in Figure 2a.

{𝑥 : 0}
init

FAA(𝑥, 1)
𝑒0

CAS(𝑥, 0, 2)
𝑒1ar rb arrb

ar

{𝑥 : 0}
init

FAA(𝑥, 1)
𝑒0

CAS(𝑥, 0, 2)
𝑒1ar rb arrb

ar
(b) Two abstract executions of the history in Figure 2b.

Fig. 3. Abstract executions of the histories from Figure 2. Arrows represent ar and rb relations. For readability,
we omit the so and wr relations. The event 𝑒0 is received-before executing 𝑒1 in Figure 3a but not in Figure 3b.
The arbitration relation is the same in both executions.

For an event 𝑒 , we use 𝑒 ∈ 𝜉 to denote the fact that 𝑒 ∈ 𝐸.

Example 3.5. Figure 3 shows abstract executions for the histories in Figure 2. In both cases, the
receive-before relation includes only the wr dependencies which is anyway required by definition.
Reading a value at some replica 𝑟 produced by an invocation 𝑒 at some other replica 𝑟 ′ should imply
that 𝑒 propagated to 𝑟 . On the left, the arbitration order includes just the wr dependencies which
already ensure totality. On the right, FAA and CAS are concurrent, i.e., both invocations were executed
before either had a chance to propagate. We present the two possible arbitration orders. This shows
that the arbitration order cannot be always determined based on the information exchanged between
the replicas, i.e. by the receive-before.

The concept of abstract execution defined earlier is subsequently used to formalize the speci-

fications of distributed storage systems. We will start with a so-called basic class that concerns

“single-object” operations.

4 Basic Storage Specifications
We present a first class of storage specifications, called basic, where operations read and/or write a

single value from/to a single object (the operations in Example 3.1 satisfy this assumption). We will

present a more general framework with multi-object operations that read and/or write multiple

values or objects in Section 7.

In general, a storage specification has two parts: a consistency model characterizing the propaga-

tion of invocations between different replicas, and an operation specification which defines object

states and return values. The definition of consistency models builds on the work of [11, 12] and

the definition of operation specifications refines replicated data types as defined in [14]. The first

two subsections define these concepts for the class of operations mentioned above, and the last

subsection formalizes the validity of an abstract execution w.r.t. such storage specifications.

4.1 Basic Consistency Models
In general, a consistency model is defined as a non-empty set of visibility formulas that characterize

the context in which an event (invocation of an operation) is executed (abstractly speaking). The

context of an event 𝑒 at a replica 𝑟 is defined as the set of events, potentially from other replicas,

that propagated to 𝑟 prior to executing 𝑒 . The notion of validity w.r.t. a consistency model defined

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:8 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

later will require that the event 𝑒 which is read by another event 𝑒′ is the last in the arbitration

order ar within the context of 𝑒′. This accurately models the Last-Writer-Wins conflict resolution

policy (we consider other conflict resolution policies in Section 7). We define hereafter a class of

so-called basic consistency models that will be extended later in Section 7.1.

Formally, a visibility formula v describes a binary relation between events which is parametrized

by an object in Objs. This is written as a predicate v𝑥 (𝑒1, 𝑒2) meaning that v relates 𝑒1 to 𝑒2 for
object 𝑥 (explained below). A consistency model (criterion) CMod is a set of visibility formulas.

For a consistency model CMod and an abstract execution 𝜉 , the context of an event 𝑟 for object

𝑥 is the set of all events 𝑒 which are related to 𝑟 by some visibility formula in CMod along with a

projection of rb and ar to this set of events, i.e.,

ctxt𝑥 (𝑟, [𝜉,CMod]) = (𝐸𝑥 , rb𝐸𝑥×𝐸𝑥 , ar𝐸𝑥×𝐸𝑥) with 𝐸𝑥 = {𝑒 ∈ 𝜉 | ∃v ∈ CMod. v𝑥 (𝑒, 𝑟)} (1)

We use Contexts to denote the set of all possible contexts, i.e., tuples (𝐸, rb𝐸, ar𝐸) where 𝐸 is a

finite set of events, rb𝐸 is an asymmetric, irreflexive relation over 𝐸, and ar𝐸 is a strict total order

over 𝐸, such that rb𝐸 ⊆ ar𝐸 .
Basic visibility formulas (used in basic consistency models) have the following form:

v𝑥 (𝜀0, 𝜀𝑛) F ∃𝜀1, . . . , 𝜀𝑛−1.
𝑛∧
𝑖=1

(𝜀𝑖−1, 𝜀𝑖) ∈ Relv𝑖 ∧ 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀𝑛) ≠ ∅ (2)

where each relation Relv𝑖 , 1 ≤ 𝑖 ≤ 𝑛, is defined by the grammar listed below:

RelF id | so | wr | rb | ar | Rel ∪ Rel | Rel;Rel | Rel? | Rel+ | Rel∗ (3)

This formula states that 𝜀0 (which is 𝑒 in Eq.1) is connected to 𝜀𝑛 (which is 𝑟 in Eq.1) by a

path of dependencies that go through some intermediate events 𝜀1, . . . 𝜀𝑛−1 (all the 𝜀 variables are
interpreted as events). The constraint wr−1𝑥 (𝜀𝑛) ≠ ∅ asks that 𝜀𝑛 reads the object 𝑥 . Every relation

used in the path is a composition of so,wr, rb and ar via union ∪, composition of relations ;, and

transitive closure
+
. Rel? is syntactic sugar for id ∪ Rel, and Rel∗ for id ∪ Rel+. Since the grammar

includes composition the existential quantifiers in Eq.3 do not increase expressivity (one could

write (𝜀0, 𝜀𝑛+1) ∈ Relv
1
; . . . ;Relv𝑛). These quantifiers are used to simplify proofs in Section 6.

The predicate 𝜀0 writes 𝑥 means that 𝜀0 writes to object 𝑥 , i.e., wval(𝑒) (𝑥) ↓.
We write v𝑥 (𝑒0, . . . 𝑒𝑛) whenever v𝑥 (𝑒0, 𝑒𝑛) holds using the events 𝑒1, . . . 𝑒𝑛−1 to instantiate the

existential quantifiers. The length of v𝑥 , denoted by len(v𝑥), is the number of relations Relv𝑖 used in

its definition (𝑛 in Equation (2)).

As mentioned above, a basic consistency model is a set of basic visibility formulas.

Figure 4 describes several visibility formulas and their corresponding consistencymodels, inspired

by Biswas et al. [11]. The dashed ar edges (leading to 𝑒) should be ignored for now. Basic visibility

formulas constrain events w.r.t. a single object – 𝑥 . Later, we will define consistency models whose

visibility formulas can impose additional constraints that concern multiple objects.

We say that a consistency model CMod1 is weaker than another consistency model CMod2,
denoted CMod1 ≼ CMod2 if intuitively, the context of any event w.r.t. CMod1 is larger than the

context w.r.t. CMod2. Formally, CMod1 ≼ CMod2 iff for every abstract execution 𝜉 , event 𝑒 ∈ 𝜉
and object 𝑥 , ctxt𝑥 (𝑒, [𝜉,CMod1]) ⊆ ctxt𝑥 (𝑒, [𝜉,CMod2]) holds. CMod1 and CMod2 are equivalent,
denoted CMod1 ≡ CMod2, when CMod1 ≼ CMod2 and CMod2 ≼ CMod1.

We assume that every consistency model CMod includes a visibility formula vso𝑥 (resp. vwr𝑥) such

that so ⊆ vso𝑥 (resp. wr𝑥 ⊆ vwr𝑥) for every object 𝑥 ∈ Objs. The constraint so ⊆ vso𝑥 corresponds to

the so-called "read-my-own-writes" consistency (i.e., an event "observes" every preceding event at

the same replica) and wr𝑥 ⊆ vwr𝑥 is a “well-formedness” constraint since visibility formulas will

constrain the write-read relation in a history (see Definition 4.2).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:9

𝑒 𝜀1

𝜀0

writes 𝑥

wr𝑥

so ∪ wr

ar

𝜀0 writes𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧
(𝜀0, 𝜀1) ∈ so ∪ wr

(a) Return-Value

𝑒 𝜀1

𝜀0

writes 𝑥

wr𝑥

rb+

ar

𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧
(𝜀0, 𝜀1) ∈ rb+

(b) Causal

𝑒 𝜀1

𝜀0

writes 𝑥
•

wr𝑥

ar∗

(so ∪ wr)ar

𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧
(𝜀0, 𝜀1) ∈ ar∗; (so ∪ wr)

(c) Prefix

𝑒 𝜀1

𝜀0

writes 𝑥

wr𝑥

ar

ar

𝜀0 writes𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧
(𝜀0, 𝜀1) ∈ ar

(d) SC / SER

Fig. 4. Visibility formulas defining the homonymous consistency models Return-Value Consistency (RVC,
Figure 4a), Causal Consistency (CC, Figure 4b), Prefix Consistency (PC, Figure 4c) and Sequential Consis-
tency/Serializability (SC/SER, Figure 4d). Solid edges describe the dependencies linking 𝜀0 and 𝜀1. We include
the wr𝑥 edge (and its source 𝑒) as a visualization of the constraint wr−1𝑥 (𝜀1) ≠ ∅. Dashed ar edges are not
part of the visibility formulas. These capture the Last-Writer-Wins conflict resolution policy discussed later,
requiring that the event 𝑒 being read succeeds all other events from the context in ar.

All consistency models in Figure 4 trivially satisfy this constraint as for any abstract execution,

so ∪ wr ⊆ rb ⊆ ar. RVC is the weakest consistency model that our framework can describe.

4.2 Basic Operation Specifications
While visibility formulas define the context of an invocation in terms of prior invocations, the effect

of an invocation is defined using the following semantical functions: rspec says whether an event

reads an object or not, and wspec defines the value written by the invocation, if any. The written

value may depend on the value read by the event in the case of atomic read writes like FAA and
CAS. Concerning notations, for a partial function 𝑓 : 𝐴 ⇀ 𝐵, we use 𝑓 (𝑎) ↓ to say that 𝑓 is defined

for 𝑎 ∈ 𝐴, and 𝑓 (𝑎) ↑, otherwise. Similarly, for a predicate 𝑝 over some set 𝐴, we use 𝑝 (𝑎) ↓ to say

that 𝑝 is true for 𝑎, and 𝑝 (𝑎) ↑, otherwise.
A basic read specification rspec is a predicate over Events. For example, Equation (4) describes

the read specification of faacas. We say that an event 𝑒 is a read event if rspec(𝑒) ↓, and in such

case, we say that 𝑒 reads obj(𝑒).
rspec(𝑟) = true iff op(𝑟) = GET, FAA, CAS (4)

A basic write specification wspec is a partial function wspec : Events ⇀ Vals ⇀ Vals, that
associates non-initial events to partial functions that map a read value to a value to be written. For

example, Equation (5) describes the write specification of faacas.

wspec(𝑤) (𝑣) =


𝑣 ′ if𝑤 = PUT(𝑥, 𝑣 ′)
𝑣 + 𝑣 ′ if𝑤 = FAA(𝑥, 𝑣 ′)
𝑣 ′′ if𝑤 = CAS(𝑥, 𝑣 ′, 𝑣 ′′) ∧ 𝑣 = 𝑣 ′
undefined otherwise

(5)

For an event 𝑒 , we say that 𝑒 is a write event if wspec(𝑒) ↓. We assume that if wspec(𝑒) ↓, then
the function wspec(𝑒) : Vals ⇀ Vals is defined for at least one value. We say that 𝑒 writes 𝑥 given 𝑣
if 𝑥 = obj(𝑒) and wspec(𝑒) (𝑣) ↓. We assume that every value 𝑣 can enable at least one event to
write, i.e., there exists 𝑒 ∈ Events s.t. wspec(𝑒) (𝑣) ↓. We also assume that if 𝑒 is a write event

but it is not a read event, e.g., a PUT invocation, then wspec(𝑒) is a total constant function, i.e.

wspec(𝑒) : Vals → Vals and wspec(𝑒) (𝑣1) = wspec(𝑒) (𝑣2) for all 𝑣1, 𝑣2.

Definition 4.1. A basic operation specification is a tuple OpSpec = (𝐸, rspec,wspec) where 𝐸 is a
set of events, such that obj(𝑒) is a singleton for every 𝑒 ∈ 𝐸.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:10 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

We use Events[OpSpec] to refer to the set of events 𝐸 in an operation specification.

Operation Closure. We define some natural assumptions about basic operation specifications

(it is easy to check that they hold on the faacas example with the definitions in Equation (4) and

Equation (5)). We assume that 𝐸 contains at least one read and one write event. We also assume

that all objects support a common set of operations with identical read and write behavior, and

that these operations can be executed at any replica. Formally, for every event 𝑒 ∈ 𝐸, replica r,
identifier id and object 𝑥 there exists an event 𝑒′ ∈ 𝐸 s.t. rep(𝑒′) = r, id(𝑒′) = id, obj(𝑒′) = 𝑥 ,

rspec(𝑒′) = rspec(𝑒) and wspec(𝑒′) = wspec(𝑒).
(Conditional) Read-Write Events. We say that OpSpec allows read-writes if 𝐸 contains an event

that is a read and a write event at the same time (e.g., FAA and CAS invocations); we call such events

read-write events. If OpSpec allows read-writes, then we assume that every value can enable some

read-write to write, i.e., for every value 𝑣 , 𝐸 contains a read-write event 𝑒 s.t. wspec(𝑒) (𝑣) ↓. As
an example, this condition is not satisfied by a storage with only GET and TEST&SET operations
(TEST&SET writes 1 if it reads 0 and nothing otherwise). Indeed, value 1 cannot enable any write.

A read-write event is called unconditional if for every value 𝑣 , wspec(𝑒) (𝑣) ↓ and conditional
otherwise. For example, a FAA invocation is unconditional and a CAS invocation is conditional. We

assume that if OpSpec allows conditional writes, then every value 𝑣 can disable some conditional

read-write to write, i.e., 𝐸 contains a conditional read-write event s.t. wspec(𝑒) (𝑣) ↑.

4.3 Validity w.r.t. Basic Storage Specifications
A basic storage specification is a pair Spec = (CMod,OpSpec) where CMod is a basic consistency

model and OpSpec is a basic operation specification. Next, we formalize the validity of an abstract

execution w.r.t. a basic storage specification.

The interpretation of a basic visibility formula v𝑥 (𝜀0, 𝜀𝑛) on an abstract execution 𝜉 is defined as

expected.

Definition 4.2. Let Spec = (CMod,OpSpec) be a basic storage specification. An abstract execution
𝜉 = (ℎ, rb, ar) of a history ℎ = (𝐸, so,wr) is valid w.r.t. Spec iff

• it contains events from the operation specification, i.e., 𝐸 ⊆ Events[OpSpec],
• the write-read dependencies of each event 𝑒 ∈ 𝐸 for object 𝑥 satisfy the following:
– if 𝑒 reads object 𝑥 , i.e. rspec(𝑒) ↓ and 𝑥 ∈ obj(𝑒), 𝑒 reads from the write event in its context
that is maximal w.r.t. the arbitration order: wr−1𝑥 (𝑒) = {𝑤𝑒

𝑥 },
– if 𝑒 does not read object 𝑥 , i.e. rspec(𝑒) ↑ or 𝑥 ∉ obj(𝑒), then wr−1𝑥 (𝑒) = ∅.

• the value written by each event 𝑒 ∈ 𝐸 to object 𝑥 is consistent with wspec:
– if 𝑒 reads object 𝑥 , i.e. rspec(𝑒) ↓ and 𝑥 ∈ obj(𝑒), then it writes based on the value read:
wval(𝑒) (𝑥) = wspec(𝑒) (wval(𝑤𝑒

𝑥) (𝑥))3,
– if 𝑒 does not read object 𝑥 , i.e. rspec(𝑒) ↑ or 𝑥 ∉ obj(𝑒), then wval(𝑒) (𝑥) = wspec(𝑒) (_)4,
where𝑤𝑒

𝑥 = maxar ctxt𝑥 (𝑒, [𝜉,CMod]).
A history ℎ is valid w.r.t. Spec iff there exists an abstract execution of ℎ which is valid w.r.t. Spec.

Recall that the value function, and implicitly, the operation specification, are used to interpret

the visibility formulas of CMod and thus define invocation contexts.

Example 4.3. The abstract executions described in Figure 3 are both valid w.r.t. (CC, faacas) as every
event which is read is also received-before (wr ⊆ rb). However, only Figure 3a is valid w.r.t. (SC, faacas).
In Figure 3a, 𝑒1 reads from the writing event that precedes it w.r.t. ar. On the other hand, in Figure 3b, 𝑒1
reads 𝑥 from init and not from 𝑒0 which is its maximal visible event w.r.t. ar that writes 𝑥 . Moreover,
3
Since wval and wspec are partial functions, the equality also means that the left side is defined iff the right side is defined.

4
_ represents any value in Vals.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:11

by the symmetry between 𝑒0 and 𝑒1, it can be proven that any abstract execution of such history is not
valid w.r.t. (SC, faacas).

5 Programs and Storage Implementations
We model programs accessing a storage and storage implementations using Labeled Transition
Systems (LTSs). Their interaction via invocations of operations will be defined as the usual par-

allel composition of LTSs. We also present the notions of availability and validity of a storage

implementation, key to the AFC theorem.

5.1 Labeled Transition Systems
An LTS 𝐿 = (𝑆,𝐴, 𝑠0,Δ) is a tuple formed of a (possibly infinite) set of states 𝑆 , a set of actions 𝐴,
an initial state 𝑠0 ∈ 𝑆 and a (partial) transition function Δ : 𝑆 × 𝐴 ⇀ 𝑆 . An execution of 𝐿 is an

alternating sequence of states and actions 𝜌 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, 𝑠2, . . . such that Δ(𝑠𝑖 , 𝑎𝑖) = 𝑠𝑖+1 for each
𝑖 . A state 𝑠 is reachable if there exists an execution ending in 𝑠 . A trace of an execution 𝜌 is the

projection of 𝜌 over actions (the maximum subsequence of 𝜌 formed of actions). The final state of

a finite trace 𝑡 , denoted by state(𝑡), is the last state of 𝜌 . The set of all traces of 𝐿 is denoted by T𝐿 .
An LTS is finite if all its traces are finite. For any finite trace 𝑡 and action 𝑎, Δ(𝑡, 𝑎) is defined as

Δ(state(𝑡), 𝑎). If Δ(𝑡, 𝑎) ↓, then 𝑡 ⊕ 𝑎 is defined by appending 𝑎 to 𝑡 .

Let 𝐿1 = (𝑆1, 𝐴1, 𝑠
1

0
,Δ1) and 𝐿2 = (𝑆2, 𝐴2, 𝑠

2

0
,Δ2) be two LTSs. We define a parallel composition

operator between 𝐿1 and 𝐿2 that is parametrized by a partial function 𝜋 : 𝐴1 ⇀ 𝐴2. This function

allow us to define a relationship between a subset of 𝐴1 and a subset of 𝐴2, called synchronized
actions of 𝐿1 and 𝐿2. The set of actions 𝑎 ∈ 𝐴1 for which 𝜋 (𝑎) is not defined (resp. actions 𝑎 ∈ 𝐴2

for which 𝜋−1 (𝑎) is not defined) are the local actions of 𝐿1 (resp. 𝐿2). Without loss of generality, we

assume that the set of local actions of 𝐿1 and 𝐿2 are disjoint.

The parallel composition of 𝐿1 and 𝐿2 w.r.t. 𝜋 is the LTS 𝐿1 𝜋 𝐿2 = (𝑆,𝐴, 𝑠0,Δ) where 𝑆 = 𝑆1 ×𝑆2,
𝐴 = 𝐴1 ∪𝐴2, 𝑠0 = (𝑠1

0
, 𝑠2

0
), and Δ is defined as follows:

Δ((𝑠1, 𝑠2), 𝑎)F


(Δ(𝑠1, 𝑎),Δ(𝑠2, 𝜋 (𝑎))) if 𝑎 ∈ 𝐴1, 𝜋 (𝑎) ↓,Δ(𝑠1, 𝑎) ↓, and Δ(𝑠2, 𝜋 (𝑎)) ↓
(Δ(𝑠1, 𝑎), 𝑠2) if 𝑎 ∈ 𝐴1, 𝜋 (𝑎) ↑, and Δ(𝑠1, 𝑎) ↓
(𝑠1,Δ(𝑠2, 𝑎)) if 𝑎 ∈ 𝐴2, 𝜋

−1 (𝑎) ↑, and Δ(𝑠2, 𝑎) ↓
undefined otherwise

(note the asymmetry due to using the function 𝜋). Whenever there is no ambiguity w.r.t. 𝜋 we

simply write 𝐿1 𝐿2.

5.2 Programs and Storage Implementations
Let 𝐸 be a set of events. A program over 𝐸 is an LTS 𝑃𝐸 = (𝑆p, 𝐴p, 𝑠

p
0
,Δp) such that 𝐸 ⊆ 𝐴p. Intuitively,

this LTS models all possible interleavings between invocations on different replicas. Actions in

𝐴p \ 𝐸 represent computation steps performed by the program locally, before or after invoking

operations on the storage. Also, to simplify the technical exposition, we do not consider separate

transitions for calling and returning from a storage operation. Intuitively, the transitions labeled by

events occur at the return time.

A storage implementation over 𝐸 is an LTS 𝐼𝐸 = (𝑆i, 𝐴i, 𝑠
i
0
,Δi) such that𝐴i contains (1) an arbitrary

set of local actions (representing computation/communication steps internal to the storage), and (2)

pairs of events in 𝐸 and their read-dependencies, i.e., pairs (𝑒,𝑚) where 𝑒 ∈ 𝐸 and𝑚 : Objs ⇀ P(𝐸).
Intuitively,𝑚 represents the write-read dependencies of 𝑒 . We also assume that each action includes

an identifier, denoted by id(𝑎), so that along an execution every action occurs only once. For any

action 𝑎 = (𝑒,𝑚), ev(𝑎) and wr-Set(𝑎) denote the event 𝑒 and the write-read dependencies 𝑚

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:12 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

respectively. Also, op(𝑎) = op(𝑒) is the operation type of 𝑎. To model communication, we assume

that 𝐴i includes two types of local actions, send actions for sending a message (from one replica to

another) and receive to receive a message.

The formalization of send/receive actions is straightforward and we omit it. We will say that

a send action matches a receive action if they concern precisely the same message (messages

are associated with unique identifiers). For any send, resp., receive, action 𝑎 at some replica 𝑟 ,

rb-Set(𝑎) denotes the set of events that 𝑟 sends in this message, resp., that 𝑟 receives in this message.

We assume that if a trace 𝑡 contains any such action, for every event 𝑒 ∈ rb-Set(𝑎) there must exist

an action (𝑒, _) preceding 𝑎 in 𝑡 . As expected, if 𝑎𝑠 and 𝑎𝑟 match, then rb-Set(𝑎𝑠) = rb-Set(𝑎𝑟).
For any action 𝑎 ∈ 𝐴p ∪𝐴i, rep(𝑎) denotes the replica executing 𝑎.
The interaction between a storage implementation 𝐼𝐸 and a program 𝑃𝐸 is defined as their

asymmetric parallel composition w.r.t. a partial function 𝜋 : 𝐴i ⇀ 𝐴p which is defined only

for actions of the form (𝑒,𝑚) (as described above) by 𝜋 (𝑒,𝑚) = 𝑒 . The program and the storage

implementation synchronize on events representing operation invocations. It is denoted by 𝐼𝐸 𝑃𝐸 .

By definition, traces of 𝐼𝐸 𝑃𝐸 include actions of the form (𝑒,𝑚) (coming from𝐴i), and local actions

of 𝑃𝐸 or 𝐼𝐸 .

Traces of 𝐼𝐸 (or 𝐼𝐸 𝑃𝐸) induce histories and abstract executions. The induced history of a trace 𝑡

of 𝐼𝐸 (or 𝐼𝐸 𝑃𝐸) is the history ℎ = (𝐸𝑡 , so𝑡 ,wr𝑡) where 𝐸𝑡 is the set events 𝑒 such that some action

𝑎𝑒 = (𝑒,𝑚) occurs in 𝑡 , so𝑡 orders events from the same replica as they occur in 𝑡 , and for every

object 𝑥 and event 𝑒 , (wr𝑡𝑥)−1 (𝑒) = W iff wr-Set(𝑎𝑒) = (𝑥,W) (𝑎𝑒 is the action that contains 𝑒). We

implicitly assume that for any event 𝑒 ∈ 𝐸 different from init, (init, 𝑒) ∈ so𝑡 . We use h (𝑡) to
denote the induced history of a trace 𝑡 .

The induced receive-before of a trace 𝑡 of 𝐼𝐸 (or 𝐼𝐸 𝑃𝐸) is the relation rb𝑡 over events induced by the
matching relation between sends and receives: (𝑒, 𝑒′) ∈ rb𝑡 iff (𝑒, 𝑒′) ∈ so𝑡 or there exists matching

send and receive actions, 𝑎𝑠 , 𝑎𝑟 and a synchronized action 𝑎 = (𝑒′, _) s.t. rep(𝑎𝑟) = rep(𝑎), 𝑎𝑟
occurs before 𝑎 in 𝑡 , and 𝑒 ∈ rb-Set(𝑎𝑠) (which coincides with rb-Set(𝑎𝑟)).

A trace 𝑡 of 𝐼𝐸 also induces a set of abstract executions of the form 𝜉 = (h (𝑡), rb𝑡 , ar𝑡) where ar𝑡
is any total order between the events in 𝜉 that is consistent with rb𝑡 , i.e., rb𝑡 ⊆ ar𝑡 (to satisfy the

requirements in Definition 3.4).

5.3 Availability and Validity of a Storage Implementation
We say that a storage implementation 𝐼𝐸 is available if, intuitively, every execution of 𝐼𝐸 terminates

when interacting with a finite program 𝑃𝐸 (executing a single synchronized action does not make a

replica enter an infinite loop of local steps), and no invocation is delayed due to a replica waiting

for messages.

We say that a replica 𝑟 ∈ Reps is waiting in a trace 𝑡 of some composition 𝐼𝐸 𝑃𝐸 if

• the program can execute some action at replica 𝑟 : there is an action 𝑎 ∈ 𝐴p s.t. rep(𝑎) = 𝑟
and Δ𝑃𝐸 (𝑡 ′, 𝑎) ↓; where 𝑡 ′ is obtained from 𝑡 by removing all local actions of 𝐼𝐸 and replacing

every action (𝑒′,𝑚) with 𝑒′, and
• the only actions of replica 𝑟 that the parallel composition can execute are receive actions:
for every action 𝑎 ∈ 𝐴p ∪𝐴i s.t. 𝑎 is not a receive action and rep(𝑎) = 𝑟 , Δ𝐼𝐸 𝑃𝐸 (𝑡, 𝑎) ↑.

Note that the latter implies that the action 𝑎 that 𝑃𝐸 can execute after 𝑡 ′ is necessarily an event in 𝐸

(otherwise, 𝑎 is a local action of 𝑃𝐸 and the parallel composition could execute it).

Definition 5.1. An implementation 𝐼𝐸 is available if the following hold:

• for every finite program 𝑃𝐸 , the composition 𝐼𝐸 𝑃𝐸 is also finite, and
• for every program 𝑃𝐸 and every trace 𝑡 of 𝐼𝐸 𝑃𝐸 , there is no replica waiting in 𝑡 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:13

Given a storage specification Spec over a set of events 𝐸, a storage implementation 𝐼𝐸 is valid w.r.t.
Spec if every trace 𝑡 induces some abstract execution which is valid w.r.t. Spec.An implementation

valid w.r.t. Spec is simply called a Spec-implementation (or implementation of Spec).

6 The Basic Arbitration-Free Consistency Theorem
We present a simpler instance of our main result (the AFC theorem) for basic storage specifications.

To simplify the statement of the theorem, we define a normal form for basic consistency models

w.r.t. a basic operation specification OpSpec. A visibility formula is called simple if it does not
use composition operators between relations, i.e., the grammar in Equation (3) is replaced by:

Rel F so | wr | rb | ar. Also, a visibility formula v from a consistency model CMod is called

vacuous w.r.t. OpSpec iff for every abstract execution 𝜉 , 𝜉 is valid w.r.t. (CMod,OpSpec) iff 𝜉 is
valid w.r.t. (CMod \ {v},OpSpec). For example, if Relv𝑖 and Relv𝑖+1 in Equation (2) are wr (for some

𝑖), then any instance of 𝜀𝑖 must be an invocation of a read-write that both reads and writes. If the

operation specification does not include read-writes (e.g., a key-value store with only PUT and GET
operations), such visibility formulas are vacuous.

Definition 6.1. A basic consistency model CMod is called in normal form w.r.t. a basic operation

specification OpSpec if it contains only simple visibility formulas and no visibility formula from
CMod is vacuous w.r.t. OpSpec.

A normal form of a basic consistency model CMod w.r.t. OpSpec is any basic consistency model

CMod′ in normal form, such that for every abstract execution 𝜉 , 𝜉 is valid w.r.t. (CMod,OpSpec)
iff 𝜉 is valid w.r.t. (CMod′,OpSpec). We show in Appendix B that every basic consistency model

CMod has a normal form. A normal form can be obtained by replacing each visibility formula v
with an equivalent (possibly infinite) set of simple visibility formulas 𝑆v. Each set 𝑆v is obtained by

recursively decomposing the union, composition and transitive closure operators in each relation

Relv (see Equation (2)).

A visibility formula is called arbitration-free if its definition does not use the arbitration relation

ar, i.e. the grammar in Equation (3) omits the ar relation. For example, in Figure 4, RVC and CC are

arbitration-free while PC and SC are not.

Definition 6.2. A consistency model is called arbitration-freew.r.t. an operation specificationOpSpec
if the visibility formulas contained in some normal form w.r.t. OpSpec are arbitration-free.

Defining arbitration-free via a normal form removes “redundant” occurrences of the arbitration-

order, i.e. visibility relations that employ ar but are vacuous w.r.t. OpSpec. We also show in Appen-

dix B that for every basic consistency model CMod, if some normal form consists of arbitration-free

visibility formulas, then this holds for any other normal form (this is actually proved for the more

general class of consistency models defined in Section 7.1).

Theorem 6.3 (Basic Arbitration-Free Consistency (AFC0)). Let Spec = (CMod,OpSpec) be
a basic storage specification. The following statements are equivalent:

(1) CMod is arbitration-free w.r.t. OpSpec,
(2) there exists an available Spec-implementation.

In the following, we present a summary for the proof of AFC0, which contains a series of lemmas.

We refer the reader to Appendix C for a detailed proof. Lemmas 6.4 to 6.6 show that if CMod is

arbitration-free then there exists an available Spec-implementation, whereas Lemma 6.7 is used to

show the converse.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:14 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

6.1 Arbitration-Freeness Implies Availability
Assume that CMod is arbitration-free w.r.t. OpSpec. We first show that CMod is weaker than CC.

Lemma 6.4. Let Spec = (CMod,OpSpec) be a basic storage specification. If CMod is arbitration-free
w.r.t. OpSpec, then CMod is weaker than CC.

Proof Sketch. If CMod is arbitration-free, then every simple visibility formula v in a normal

form of CMod does not use ar, i.e. it only uses so,wr and rb. By Definition 3.4, so ∪ wr ⊆ rb
in any abstract execution 𝜉 . Hence, for every object 𝑥 , ctxtCMod (𝑟, [𝜉, 𝑥]) ⊆ ctxtCC (𝑟, [𝜉, 𝑥]), i.e.
CMod ≼ CC. □

Lemma 6.5 below implies that if a consistency model CMod is weaker than CC, then any available

(CC,OpSpec)-implementation is also an available (CMod,OpSpec)-implementation.

Lemma 6.5. Let OpSpec be a basic operation specification, and let CMod1,CMod2 be a pair of
basic consistency models s.t. CMod2 is weaker than CMod1. Any abstract execution valid w.r.t.
(CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).
Lemma 6.6 shows that there exists an available (CC,OpSpec)-implementation, which concludes

the proof of this direction.

Lemma 6.6. Let OpSpec be a basic operation specification. There exists an available (CC,OpSpec)-
implementation.

Proof Sketch. We define an available storage implementation of (CC,OpSpec) which is an

abstraction of existing CC implementations [9, 10, 25, 26].

The storage implementation 𝐼𝐸 describes a transition function associating events with the write-

read relation obtained by computing the maximum writing event on its causal past (i.e. all write

events that are already received in its replica). Each replica 𝑟 maintains the causal past as follows: (1)

every event invoked at 𝑟 is added to 𝑟 ’s causal past, (2) after every invocation, 𝑟 broadcasts a message

to all other replicas that contains its causal past, (3) whenever a replica 𝑟 ′ receives this message,

it adds the included causal past to its own. Sent messages are not required to be received before

executing an invocation. The latter implies trivially that 𝐼𝐸 is an available storage implementation.

The validity w.r.t. (CC,OpSpec) follows easily from the “transitive” communication of causal pasts

between replicas. □

6.2 Availability Implies Arbitration-Freeness
We prove the contrapositive: ifCMod is not arbitration-free, then no available Spec-implementation

exists. Indeed, ifCMod is not arbitration-free, every normal formCMod′ ofCMod contains a simple

visibility formula involving ar (see Definition 6.2). By Lemma 6.7, such a formula precludes the

existence of an available (CMod′,OpSpec)-implementation. Consequently, there is no available

(CMod,OpSpec)-implementation, since any such implementation would also be an available

(CMod′,OpSpec)-implementation – this is an easy observation as CMod is equivalent to CMod′.

Lemma 6.7. Let Spec = (CMod,OpSpec) be a basic storage specification. Assume that CMod
contains a simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some 𝑖, 0 ≤
𝑖 ≤ len(v), Relv𝑖 = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proof Sketch. We assume by contradiction that there is an available implementation 𝐼𝐸 of Spec.
. We use the visibility formula v to construct a specific program, which by the assumption, admits a

trace (in the composition with this implementation) that contains no receive action. We show that

any abstract execution induced by this trace, which is admissible by any available implementation

of Spec, is not valid w.r.t. Spec.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:15

init

. . .𝑒
𝑥0
0

. . .

. . .𝑒
𝑥0
𝑑v−1

. . .𝑒
𝑥1
𝑑v

. . .

. . .𝑒
𝑥1
𝑛

. . . 𝑒
𝑥1
0

. . .

. . . 𝑒
𝑥1
𝑑v−1

. . . 𝑒
𝑥0
𝑑v

. . .

. . . 𝑒
𝑥0
𝑛

writes 𝑥0

do not write 𝑥0

reads 𝑥0

so so

so Relv
1

so Relv
𝑑v−1

so

so Relv
𝑑v+1

so Relv𝑛

so Relv
1

so Relv
𝑑v−1

so

so Relv
𝑑v+1

so Relv𝑛

ar

ar

rb

Fig. 5. Abstract execution of a trace without receive actions for the visibility formula v. If 𝑖 ≠ 𝑑v, (𝑒𝑥𝑙𝑖−1, 𝑒
𝑥𝑙
𝑖
) ∈

Relv
𝑖
holds because the two events are executed at the same replica (recall that so ⊆ rb ⊆ ar). If (𝑒𝑥0

𝑑v−1, 𝑒
𝑥1
𝑑v−1) ∈

ar, then since so ⊆ ar and ar is transitive, we get that (𝑒𝑥0
𝑑v−1, 𝑒

𝑥0
𝑑v
) ∈ Relv

𝑑v
= ar; and therefore, that v𝑥0 (𝑒

𝑥0
0
, 𝑒
𝑥0
𝑛)

holds. However, in the absence of receives, (𝑒𝑥0
0
, 𝑒
𝑥0
𝑛) ∉ rb.

The program 𝑃 we construct generalizes the litmus programs presented in Figure 1. 𝑃 uses two

replicas 𝑟0, 𝑟1, two distinguished objects 𝑥0, 𝑥1 and a collection of events 𝑒
𝑥𝑙
𝑖
, 0 ≤ 𝑖 ≤ 𝑛, 𝑙 ∈ {0, 1}.

The events are used to “encode” two instances v𝑥0 and v𝑥1 of the visibility formula.

Let 𝑑v be the largest index 𝑖 s.t. Relv𝑖 = ar (last occurrence of ar). Then, v is formed of two parts:

the path of dependencies from 𝜀0 to 𝜀𝑑v which is not arbitration-free, and the suffix from 𝜀𝑑v up to

𝜀len(v) , the arbitration-free part. Thus, v is of the form:

v𝑥 (𝜀0, 𝜀𝑛) F ∃𝜀1, . . . , 𝜀𝑛−1.
𝑛∧
𝑖=1

(𝜀𝑖−1, 𝜀𝑖) ∈ Relv𝑖 ∧ 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀𝑛) ≠ ∅

where 𝑛 = len(v), Relv𝑖 ∈ {so,wr, rb, ar} for 𝑖 < 𝑑𝑣 , Relv𝑑v = ar, and Relv𝑖 ∈ {so,wr, rb} for 𝑖 > 𝑑v.
Replica 𝑟𝑙 executes first events 𝑒

𝑥𝑙
𝑖

with 𝑖 < 𝑑v and then, events 𝑒
𝑥1−𝑙
𝑖

with 𝑖 ≥ 𝑑v – the replica

𝑟𝑙 executes the non arbitration-free part of v for object 𝑥𝑙 and the arbitration-free suffix of v for
𝑥1−𝑙 . All events in replica 𝑟𝑙 access (read and/or write) object 𝑥𝑙 except for 𝑒

𝑥𝑙
𝑛 which reads 𝑥1−𝑙 .

For ensuring that v𝑥 (𝑒𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
𝑛) holds in an induced abstract execution of a trace without receive

actions, we require that if Relv𝑖 = wr, then 𝑒𝑥𝑙
𝑖−1 is a write event and 𝑒

𝑥𝑙
𝑖

is a read event. Figure 5

exhibits a diagram of such execution.

Example 6.8. We illustrate the construction for Prefix Consistency (PC) and a Key-Value store with
PUT and GET operations (their specification is defined in Section 4.2). PC can be defined as the following
set of simple visibility formulas (obtained from Prefix in Figure 4c):

v1𝑥 (𝜀0, 𝜀1) F 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧ (𝜀0, 𝜀1) ∈ so
v2𝑥 (𝜀0, 𝜀1) F 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀1) ≠ ∅ ∧ (𝜀0, 𝜀1) ∈ wr
v3𝑥 (𝜀0, 𝜀2) F ∃𝜀1. 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀2) ≠ ∅ ∧ (𝜀0, 𝜀1) ∈ ar ∧ (𝜀1, 𝜀2) ∈ so
v4𝑥 (𝜀0, 𝜀2) F ∃𝜀1 . 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀2) ≠ ∅ ∧ (𝜀0, 𝜀1) ∈ ar ∧ (𝜀1, 𝜀2) ∈ wr

(6)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:16 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Observe that v4𝑥 is vacuous w.r.t. the specification of PUT and GET since it implies that 𝜀2 reads from
multiple events, and PUT and GET read a single object at a time. Thus, the normal form of PC w.r.t. the
specification of PUT and GET contains only the first three visibility formulas above.

The only visibility formula which is not arbitration-free is v3𝑥 . We have that the index 𝑑v = 1 and we
consider the following types of events:

𝑒
𝑥0
0

: PUT(𝑥0, _), 𝑒𝑥0
1

: PUT(𝑥1, _), 𝑒𝑥0
2

: GET(𝑥0)
𝑒
𝑥1
0

: PUT(𝑥1, _), 𝑒𝑥1
1

: PUT(𝑥0, _), 𝑒𝑥1
2

: GET(𝑥1)

Replica 𝑟0 executes 𝑒
𝑥0
0

and then 𝑒𝑥1
1

and 𝑒𝑥1
2
. Replica 𝑟1 executes 𝑒

𝑥1
0

and then 𝑒𝑥0
1

and 𝑒𝑥0
2
.

Given such a program 𝑃 , the proof proceeds as follows:

(1) There exists a finite trace 𝑡 of 𝑃 𝐼𝐸 that contains no receive action (Lemma C.5): Since 𝐼𝐸 is

available, it can always delay receiving messages, and execute other actions instead. Then, as

𝑃 is a finite program, such an execution must be finite.

(2) The trace 𝑡 induces a history ℎv = (𝐸, so,wr) and an abstract execution 𝜉v = (ℎ, rb, ar) where
rb = so (ar is arbitrary as long as rb ⊆ ar). As 𝐼𝐸 is valid w.r.t. Spec, 𝜉v is valid w.r.t. Spec.
Next, we prove that since rb = so, events in 𝜉v read the latest value w.r.t. so written on their

associated object in 𝜉v (Lemma C.6). In particular, we deduce that all traces of 𝑃 without

receive events induce the same history and therefore, the induced history does not change

when the induced arbitration order changes.

(3) Since ar is a total order, either (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar or (𝑒𝑥1

𝑑v−1, 𝑒
𝑥0
𝑑v−1) ∈ ar. W.l.o.g., assume that

(𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar. By Lemma C.7, we deduce that 𝑒

𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
𝑛 , [𝜉v,CMod]). The proof is

explained in Figure 5: if (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar, then all events 𝑒

𝑥0
𝑖

form a path in such way that

v𝑥0 (𝑒
𝑥0
0
, . . . 𝑒

𝑥0
𝑛) holds in 𝜉v.

(4) Since 𝑒
𝑥0
𝑛 is the only event at 𝑟1 that reads or writes 𝑥0 and events in 𝜉v read the latests values

w.r.t. so in 𝜉v, we deduce that 𝑒
𝑥0
𝑛 reads 𝑥0 from init. However, as 𝑒𝑥0

0
∈ ctxt𝑥0 (𝑒

𝑥0
𝑛 , [𝜉v,CMod])

and init precedes 𝑒
𝑥0
0

in arbitration order, we deduce that 𝑒
𝑥0
𝑛 does not read the latest value

w.r.t. ar, i.e. rspec(𝑒𝑥0𝑛) ↓ but wr−1𝑥0 (𝑒
𝑥0
𝑛) ≠ {maxar ctxt𝑥0 (𝑒

𝑥0
𝑛 , [𝜉v,CMod])}. Therefore, 𝜉v

is not valid w.r.t. Spec (see Definition 4.2). This contradicts the hypothesis that 𝐼𝐸 is an

implementation of Spec. □

The corollary below is a direct consequence of Theorem 6.3 and Lemma 6.4.

Corollary 6.9. Let OpSpec be a basic operation specification. The strongest consistency model CMod
for which (CMod,OpSpec) admits an available implementation is CC.

7 Generalized Distributed Storage Specifications
We describe a generalization of the basic storage specifications from Section 4 along three di-

mensions: a larger class of consistency models, multi-object operations, and more general read

behaviors. To rule out anomalous behaviors in this generalization, we introduce a set of additional

assumptions. Figure 6 summarizes the structure of storage specifications and the relationship

between basic and generalized specifications in terms of assumptions.

7.1 Consistency Models
The set of basic consistency models (Section 4.1) does not include (parallel) snapshot isolation,
and the version of 𝑘-bounded staleness considered in Section 2. Snapshot Isolation, 𝑘-Bounded

Staleness and Parallel Snapshot Isolation are defined, respectively, using the visibility formulas

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:17

Basic Storage Specification

Basic Operation Specification

rspec and wspec
Operation closure (Sec. 4.2)

Reading from a single visible write:

Reading from maxar (Sec. 4.2)

Writing to a single object:

Every value enables and disables some
conditional read-write event (Sec. 4.2)

Visibility formulas (Eq. 2)

Basic Consistency Model

Storage Specification

Operation Specification

rspec (Def. 7.4), extract (Def. 7.5) and wspec (Def. 7.6)
Operation closure (Sec. 7.4)

Reading from multiple visible writes:

Maximally-layered rspec (Sec. 7.4)
Writing to multiple objects:

∃ execution-correctors (Def. 7.13)

Consistency Model

Visibility formulas with conflict predicates (Eq. 7)
Causal-suffix closure (Sec. 7.1)

Ba
si
c
ca
se

G
en
er
al

ca
se

Fig. 6. Conceptual map relating basic and generalized storage specifications (Sections 4 and 7). Storage
specifications are composed of consistency models and operation specifications. Assumptions are written in
bold text. Arrows denote how definitions/assumptions translate from the basic case to the general case.

Conflict (Figure 7a), k-Bounded (Figure 7b)
5
, and n-PSI (Figure 7c). To include such consistency

models in our formalization, we extend the syntax of visibility formulas so that the intermediate

events can be further constrained via the wrCons formula:

v𝑥 (𝜀0, 𝜀𝑛) F ∃𝜀1, . . . , 𝜀𝑛−1 .
𝑛∧
𝑖=1

(𝜀𝑖−1, 𝜀𝑖) ∈ Relv𝑖 ∧ wr−1𝑥 (𝜀𝑛) ≠ ∅ ∧ wrConsv𝑥 (𝜀0, . . . 𝜀𝑛) (7)

The formula wrConsv𝑥 (𝜀0, . . . 𝜀𝑛) is a conjunction of predicates conflict (𝐸) and conflict𝑥 (𝐸) with
𝐸 ⊆ {𝜀0, . . . 𝜀𝑛}. The predicate conflict (𝐸) (resp., conflict𝑥 (𝐸)) means that all the events in 𝐸 write

on some object𝑦 (resp., the object 𝑥). Since we want to preserve the constraint 𝜀0 writes 𝑥 from basic

visibility formulas, we require that there exists a set 𝐸 ⊆ {𝜀0, . . . 𝜀𝑛} s.t. 𝜀0 ∈ 𝐸 and conflict𝑥 (𝐸) is
included in wrConsv𝑥 (𝜀0, . . . 𝜀𝑛) (𝐸 can be the singleton 𝜀0). The interpretation of a conflict predicate

in an abstract execution 𝜉 is done as expected: a predicate conflict (𝐸) (resp., conflict𝑥 (𝐸)) holds
iff there exists an object 𝑦 s.t. for every 𝑒 ∈ 𝐸, 𝑒 writes 𝑦 in 𝜉 (resp. 𝑒 writes 𝑥 in 𝜉). As before, the
predicate 𝜀 writes 𝑦 is true iff wval(𝑒) (𝑦) ↓.

From this point on, a consistency model is defined as a set of visibility formulas, as in Equation (7).

Normal Form.We generalize the normal form of a consistency model to take into account con-

flict predicates. A consistency model in normal form only contains visibility formulas that are

simple, non-vacuous and “conflict-maximal”. A conflict-strengthening of a visibility formula v is
a visibility formula v′ obtained from v by (1) replacing some occurrence of conflict (𝐸) (resp.,
conflict𝑥 (𝐸)) with conflict (𝐸′) (resp., conflict𝑥 (𝐸′)) where 𝐸′ is a strict superset of 𝐸 or (2) re-

moving predicate conflict (𝐸) if conflict𝑥 (𝐸) also belongs to v. A visibility formula v is conflict-
maximal w.r.t. OpSpec iff there is no conflict-strengthening v′ such that for every execution 𝜉 over

events in Events[OpSpec], object 𝑥 , and events 𝑒0, . . . 𝑒len(v) , if v𝑥 (𝑒0, . . . 𝑒len(v)) holds in 𝜉 , then
v′𝑥 (𝑒0, . . . 𝑒len(v)) holds in 𝜉 as well. A consistency model CMod is conflict-maximal w.r.t. OpSpec
iff all its visibility formulas are conflict-maximal w.r.t. OpSpec.
For example, if Relv𝑖 = wr, any instance of 𝜀𝑖 must write on some object 𝑦. In conflict-maximal

visibility formulas, this fact is represented with a conflict predicate (conflict (𝐸) or conflict𝑥 (𝐸)) s.t.
𝜀𝑖−1 ∈ 𝐸. If OpSpec requires that every event reading 𝑦 also writes on 𝑦, then in a conflict-maximal

visibility formula, both 𝜀𝑖−1, 𝜀𝑖 belong to 𝐸. In general, if in any abstract execution, the events

5
Our version of 𝑘-Bounded Staleness corresponds to the (𝑘,𝑇)-Bounded Staleness with𝑇 = ∞ as defined in [28].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:18 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

𝑒 𝜀2 writes 𝑦

𝜀0

writes 𝑥
𝜀1

writes 𝑦

wr𝑥

ar∗

ar
ar

∃𝜀1 .(𝜀0, 𝜀1) ∈ ar∗ ∧ (𝜀1, 𝜀2) ∈ ar ∧
wr−1𝑥 (𝜀1) ≠ ∅ ∧ 𝜀0 writes 𝑥 ∧
conflict (𝜀1, 𝜀2)

(a) Conflict

𝑒

𝜀0

writes 𝑥
𝜀1

writes 𝑥

𝜀𝑘−1 writes 𝑥

𝜀𝑘
wr𝑥

ar . . .

ar
ar

∃𝜀1 . . . 𝜀𝑘−1 .
∧𝑘

𝑖=1 (𝜀𝑖−1, 𝜀𝑖) ∈ ar ∧
wr−1𝑥 (𝜀1) ≠ ∅∧conflict𝑥 (𝜀0, . . . 𝜀𝑘−1)

(b) k-Bounded

𝑒

𝜀0

writes 𝑥
𝜀1

writes 𝑥1
𝜀2

writes 𝑥1

𝜀2·𝑛−1
writes 𝑥𝑛

𝜀2·𝑛 writes 𝑥𝑛

𝜀2·𝑛+1
wr𝑥

rb∗ ar
. . .

ar

rb∗

ar

∃𝜀1 . . . 𝜀2·𝑛 .
∧𝑛

𝑖=0 (𝜀2·𝑖 , 𝜀2·𝑖+1) ∈ rb∗∧∧𝑛
𝑖=1 (𝜀2·𝑖−1, 𝜀2·𝑖) ∈ ar ∧

wr−1𝑥 (𝜀1) ≠ ∅ ∧ 𝜀0 writes 𝑥∧𝑛
𝑖=1 conflict (𝜀2·𝑖−1, 𝜀2·𝑖)

(c) n-PSI

Fig. 7. Conflict, k-Bounded and n-PSI visibility formulas used to define Snapshot Isolation (SI), Bounded
Staleness (BS) and Parallel Snapshot Isolation (PSI). SI is defined by Prefix (Figure 4c) and Conflict, BS is
defined by k-Bounded and Return-Value (Figure 4a), and PSI is defined by Causal (Figure 4b) and the set of
visibility formulas {n-PSI | 𝑛 ≥ 1}.

instantiating 𝜀𝑖1 , . . . , 𝜀𝑖 𝑗 from v𝑥 always conflict (resp. they always write 𝑥), then the visibility

formula v must contain the predicate conflict (𝜀𝑖1 , . . . , 𝜀𝑖 𝑗) (resp. conflict𝑥 (𝜀𝑖1 , . . . , 𝜀𝑖 𝑗)).

Definition 7.1. A consistency model CMod is called in normal form w.r.t. a operation specification

OpSpec if it contains only simple, conflict-maximal visibility formulas and no visibility formula from
CMod is vacuous w.r.t. OpSpec.

Under some operation specifications, consistency models can be equivalent due to conflict

predicates. For example, in a storage with only FAA operations, SI and SER are equivalent due to
the Conflict visibility formula: in this specification, every event is both a read and a write event

and so any event reading 𝑥 conflicts with an event writing 𝑥 .

Similarly to Section 6, we say that a consistency modelCMod is arbitration-freew.r.t. an operation
specification OpSpec if there exists a consistency model in general normal form w.r.t. OpSpec that
is equivalent to CMod and whose visibility formulas are arbitration-free. Appendix B demonstrates

the existence of a normal form and shows that it is not possible for two normal forms to differ

solely in that one includes only arbitration-free visibility formulas while the other does not. This

result confirms that arbitration-freedom is not a property of the chosen normal form, but rather an

inherent characteristic of the definitions of CMod and OpSpec.
Causal Suffix Closure. We introduce an assumption about consistency models which is used in

the proof of the AFC theorem in order to find counterexamples to availability that involve only two

replicas. This assumption is satisfied by all practical cases that we are aware of (see Example 7.3).

Therefore, we assume that every normal form CMod of a consistency model is closed under
causal suffixes, i.e., for every visibility formula v𝑥 ∈ CMod, CMod contains every arbitration-free

“suffix” of v𝑥 that starts with an event writing 𝑥 . Thinking about a visibility formula v as a path of

dependencies (between the pairs (𝜀𝑖−1, 𝜀𝑖)), a suffix of v is a suffix of that path. For example, the

visibility formulas 𝑠 and 𝑠′ described in Equation (9) and Equation (10) are suffixes of the visibility

formula in Equation (8).

v𝑥 (𝜀0, 𝜀3) = ∃𝜀1, 𝜀2.(𝜀0, 𝜀1) ∈ rb ∧ (𝜀1, 𝜀2) ∈ ar ∧ (𝜀2, 𝜀3) ∈ so ∧ wr−1𝑥 (𝜀3) ≠ ∅ ∧ conflict𝑥 (𝜀0, 𝜀1, 𝜀2)
(8)

𝑠𝑥 (𝜀1, 𝜀3) = ∃𝜀2 .(𝜀1, 𝜀2) ∈ ar ∧ (𝜀2, 𝜀3) ∈ so ∧ wr−1𝑥 (𝜀3) ≠ ∅ ∧ conflict𝑥 (𝜀1, 𝜀2) (9)

𝑠′𝑥 (𝜀2, 𝜀3) = (𝜀2, 𝜀3) ∈ so ∧ wr−1𝑥 (𝜀3) ≠ ∅ ∧ conflict𝑥 (𝜀2) (10)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:19

Formally, let v𝑥 be a visibility formula defined as in Equation (7). Let conflict𝑥 (v𝑥) be the union of

the sets 𝐸 such that conflict𝑥 (𝐸) occurs in the definition of v𝑥 . For any variable 𝜀𝑘 ∈ conflict𝑥 (v𝑥),
the 𝜀𝑘 -suffix of v𝑥 is the formula obtained by (1) removing the quantifiers for the first 𝑘 quantified

events, 𝑒1 . . . 𝑒𝑘 , and (2) removing all occurrences of the (now) free variables 𝑒0, . . . 𝑒𝑘−1, i.e.:

suff𝑥 (v𝑥 , 𝑘) (𝜀𝑘 , 𝜀𝑛) F ∃𝜀𝑘+1, . . . , 𝜀𝑛−1 .
𝑛∧

𝑖=𝑘+1
(𝜀𝑖−1, 𝜀𝑖) ∈ Relv𝑖 ∧ wr−1𝑥 (𝜀𝑛) ≠ ∅ ∧ wrConsv𝑥 (𝜀𝑘 , . . . 𝜀𝑛)

where wrConsv𝑥 (𝜀𝑘 , . . . 𝜀𝑛) is obtained from wrConsv𝑥 (𝜀0, . . . 𝜀𝑛) by projecting all the conflict predi-

cates over the set of events 𝐸𝑘 = {𝜀𝑘 , . . . , 𝜀𝑛}, i.e., a predicate conflict (𝐸) (resp. conflict𝑥 (𝐸)) occurs
in wrConsv𝑥 (𝜀0, . . . 𝜀𝑛) iff conflict (𝐸 ∩ 𝐸𝑘) (resp. conflict𝑥 (𝐸 ∩ 𝐸𝑘)) occurs in wrConsv𝑥 (𝜀𝑘 , . . . 𝜀𝑛).

We refer to arbitration-free suffixes as causal, since the remaining dependencies intuitively reflect

broader notions of causality. The intuition behind this notion of closure is that the context of an

invocation should be upward-closed with respect to causality—meaning that if an update (writing

𝑥) is included, then any later updates (writing 𝑥) along the dependency path defined by the visibility

formula that lie in its causal past must also be included.

We say that a visibility formula v′ subsumes a visibility formula v of the same length if for every

𝑖, 1 ≤ 𝑖 ≤ len(𝑣), Rel𝑣′𝑖 is stronger or equal than Relv𝑖 . We say that rb is stronger than so and wr, and
ar is stronger than rb, so and wr. The extension of “being stronger” to any relation Rel described
using Equation (3) is done as expected, as all our operators are positive (there are no negations).

Definition 7.2. A consistency model CMod is closed under causal suffixes if for every v𝑥 ∈ CMod
and 𝜀𝑘 ∈ conflict𝑥 (v𝑥), CMod includes some visibility formula v′ that subsumes every arbitration-free
suffix of 𝑣 .

Example 7.3. A consistency model containing the visibility formula v in Equation (8) must also
contain the visibility formula 𝑠′ in order to be closed under causal suffixes. Note that 𝑠 uses arbitration
and it is not required to be included.
Any basic consistency model is closed under causal suffixes because every basic visibility formula

has no proper arbitration-free suffix. Indeed, conflict𝑥 (v𝑥) contains just the first event 𝜀0 (assuming
that 𝜀0 writes 𝑥 is rewritten as conflict𝑥 ({𝜀0})). The models described in Figures 4 and 7 are trivially
closed under causal suffixes because their visibility formulas have no arbitration-free suffixes.

7.2 Operation Specifications
We generalize operation specifications to allow operations to access (read or write) multiple objects,

and to support read values that are not limited to the inputs of individual write operations. For

example, this includes multi-value reads that return all concurrently written values for an object,

or counter reads that return an aggregated value computed from all observed increments.

The generalized reading behavior is modeled using two functions rspec and extract described
hereafter. We also introduce a generalized wspec function. Therefore, rspec selects from a given

context the events (updates) which are relevant for a reading invocation, extract defines the value
read by an invocation, if any (based on the output of rspec), and wspec defines the value written
by an invocation, if any (to model conditional read-writes, this is based on the output of extract).

Definition 7.4. A read specification rspec : Events → Objs → Contexts → P(Events) is a
function such that for every object 𝑥 , context 𝑐 = (𝐸, rb, ar) and event 𝑒 :
(1) well-formedness: rspec(𝑒) (𝑥, 𝑐) ⊆ 𝐸, and if 𝑒 is an initial event, rspec(𝑒) (𝑥, 𝑐) = ∅, and
(2) unconditional reading: if rspec(𝑒) (𝑥, 𝑐) ≠ ∅ for some context 𝑐 , then for every non-empty context

𝑐′, rspec(𝑒) (𝑥, 𝑐′) ≠ ∅

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:20 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Equations (11) to (13) describe the read specifications of faacas, a key-value store k-mv with
PUT(𝑥, 𝑣) andmulti-value GET(𝑥) operations (Appendix A.2), and a collection of distributed counters
counter with inc(𝑥) and rd(𝑥) operations (Appendix A.3). Concerning the relationship to basic
read specifications, note that the faacas specification in Equation (4) was simpler because the

constraint from Equation (11) was imposed in the notion of validity for abstraction executions

(Definition 4.2). For multi-value reads (Equation (12)), the read specification selects the maximal

elements in the receive-before relation (which models causality), and for a counter (Equation (13)),

it returns all events in the context.

rspec(𝑟) (𝑥, 𝑐) =
{
{maxar 𝐸}, if 𝑟 ∈ {GET(𝑥), FAA(𝑥, 𝑣), CAS(𝑥, 𝑣, 𝑣 ′)} and 𝑐 = (𝐸, rb, ar)
∅, otherwise

(11)

rspec(𝑟) (𝑥, 𝑐) =
{
maxrb 𝐸, if 𝑟 = GET(𝑥) and 𝑐 = (𝐸, rb, ar)
∅, otherwise

(12)

rspec(𝑟) (𝑥, 𝑐) =
{
𝐸, if 𝑟 = rd(𝑥) and 𝑐 = (𝐸, rb, ar)
∅, otherwise

(13)

The extract specification below computes the value returned from an object 𝑥 based on the set

of invocations writing 𝑥 returned by the read specification which are paired with values they write

(this will become clearer when defining the application of these functions on an abstract execution).

Definition 7.5. An extract specification extract : Events → Objs → P(Events × Vals) → Vals,
such that extract(init) is defined for every initial event init.

Equation (14) describes the extract specification of faacas: the value extracted for GET, FAA
and CAS coincides with the value written by some previous PUT/FAA/CAS operation. Equation (15)

describes the extract specification of k-mv: the value extracted for GET is the set of values written

by some previous PUT. In the case of counter, Equation (16), the value extracted for rd returns the

number of increment invocations in the input, which equals |𝑅 | minus one for the initial event

init which is always included in 𝑅 (since it is so before all other events).

extract(𝑟) (𝑥, 𝑅) =
{
𝑣 if 𝑟 ∈ {GET(𝑥), FAA(𝑥, 𝑣 ′), CAS(𝑥, 𝑣 ′, 𝑣 ′′)} and 𝑅 = {(𝑤, 𝑣)}
undefined otherwise

(14)

extract(𝑟) (𝑥, 𝑅) =
{
{𝑣 | (_, 𝑣) ∈ 𝑅} if 𝑟 = GET(𝑥)
undefined otherwise

(15)

extract(𝑟) (𝑥, 𝑅) =
{

|𝑅 | − 1 if 𝑟 = rd(𝑥)
undefined otherwise

(16)

Finally, the write specification computes the value written by an invocation to an object 𝑥 , based

on the values it reads. This makes it possible to model atomic read-writes, e.g., a compare-and-

swap, which may write or not depending on what they read, or the value they write may change

depending on what they read, e.g., a Fetch-and-Add.

Definition 7.6. A write specification wspec : Events → Objs → Vals → Vals is a function such
that wspec(init) is defined for every initial event init.

The write specification of faacas and k-mv, Equation (17), describes that its write operations are

PUT, FAA and CAS. PUT and FAA unconditionally writes on 𝑥 while CAS does it depending on the

read-and-extracted value of 𝑥 ; where 𝑥 is the only object accessed by the invocation. In the case of

counter, Equation (19), only the operation inc(𝑥) writes, writing a dummy value 1 just to indicate

that the write has taken place.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:21

wspec(𝑤) (𝑥, 𝑣) =


𝑣 ′ if𝑤 = PUT(𝑥, 𝑣 ′)
𝑣 + 𝑣 ′ if𝑤 = FAA(𝑥, 𝑣 ′)
𝑣 ′′ if𝑤 = CAS(𝑥, 𝑣 ′, 𝑣 ′′) ∧ 𝑣 = 𝑣 ′
undefined otherwise

(17)

wspec(𝑤) (𝑥, 𝑣) =
{
𝑣 ′ if𝑤 = PUT(𝑥, 𝑣 ′)
undefined otherwise

(18)

wspec(𝑤) (𝑥, _) =
{
1 if𝑤 = inc(𝑥)
undefined otherwise

(19)

Definition 7.7. An operation specification is a tuple OpSpec = (𝐸, rspec, extract,wspec) where 𝐸
is a set of events. Events[OpSpec] refers to the set of events 𝐸 in an operation specification.

Appendix A contains more examples of operation specifications, including SQL statements.

7.3 Validity w.r.t. Storage Specifications
We extend the notion of validity for abstract executions to (general) storage specifications, in a

way that is similar to the case of basic storage specifications (Section 4.3). We use the extension of

rspec, extract, and wspec to abstract executions defined below:

rspec(𝑒) (𝑥, [𝜉,CMod]) = rspec(𝑒) (𝑥, ctxt𝑥 (𝑒, [𝜉,CMod]))
extract(𝑒) (𝑥, [𝜉,CMod]) = extract(𝑒) (𝑥, {(𝑒′, wval(𝑒) (𝑥)) | 𝑒′ ∈ rspec(𝑒) (𝑥, [𝜉,CMod]) })
wspec(𝑒) (𝑥, [𝜉,CMod]) = wspec(𝑒) (𝑥, extract(𝑒) (𝑥, [𝜉,CMod]))

Definition 7.8. Let Spec = (CMod,OpSpec) be a storage specification. An abstract execution
𝜉 = (ℎ, rb, ar) of a history ℎ = (𝐸, so,wr) is valid w.r.t. Spec iff

• 𝜉 contains events from the operation specification, i.e., 𝐸 ⊆ Events[OpSpec],
• for every event 𝑟 ∈ 𝐸, wr−1𝑥 (𝑟) = rspec(𝑟) (𝑥, [𝜉,CMod]), and
• the value written by each event 𝑒 ∈ 𝐸 to object 𝑥 is consistent with wspec, i.e., wval(𝑒) (𝑥) =
wspec(𝑒) (𝑥, [𝜉,CMod]).

A history ℎ is valid w.r.t. Spec iff there exists an abstract execution of ℎ which is valid w.r.t. Spec.

Observe that Definition 7.8 coincides with Definition 4.2 for storage systems that also admit

basic storage specifications, e.g., faacas.

7.4 Assumptions About Operation Specifications
To avoid pathological behaviors in the generalization of specifications, wemake several assumptions.

Maximally-Layered Read Specifications. For any basic operation specification OpSpec, the
validity of an abstract execution w.r.t. a stronger consistency model (and OpSpec) implies validity

w.r.t. a weaker one (see Lemma 6.5). In general, this is not true for operation specifications as

described in this section (see Example 7.9). Therefore, we introduce an assumption about read

specifications, called maximally-layered, which ensures that this property remains true.

Example 7.9. Let OpSpec = (𝐸, rspec, extract,wspec) be an operation specification of a key-value
store with GET and PUT operations whose read specification is given by Equation (20).

rspec(𝑒) (𝑥, 𝑐) =
{
{maxar 𝐸} if �𝑒′ ∈ 𝐸 s.t. rep(𝑒) ≠ rep(𝑒′) and 𝑐 = (𝐸, rb, ar)
init otherwise (20)

We compare the validity of the abstract execution 𝜉 depicted in Figure 8 w.r.t. SC and CC (observe
that CC ≼ SC). Under SC both 𝑒0 and 𝑒1 are visible to 𝑒2, which implies rspec(𝑒2) (𝑥, [𝜉, SC]) =

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:22 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

{𝑥 : 0}
init

PUT(𝑥, 1)
𝑒0

PUT(𝑥, 2)
𝑒1

GET(𝑥)
𝑒2

so so

so

wr𝑥

(a) History of a key-value store with PUT and GET.

{𝑥 : 0}
init

PUT(𝑥, 1)
𝑒0

PUT(𝑥, 2)
𝑒1

GET(𝑥)
𝑒2

ar rb arrb

ar
rb ar

(b) An abstract execution of the history in Figure 8a.

Fig. 8. A history and an abstract execution of the operation specification in Example 7.9. For readability, we
omit the so and wr relations from the abstract execution. Events 𝑒1 and 𝑒2 are executed in the same replica,
different from 𝑒0’s replica.

{init}. Therefore, 𝜉 is valid w.r.t. SC. However, under CC, only 𝑒1 is visible to 𝑒2, which implies
rspec(𝑒2) (𝑥, [𝜉, CC]) = {𝑒1}, and therefore, 𝜉 is not valid w.r.t. CC.

Let ≤ be a partial order over a set 𝐴. A chain of ≤ is a subset of 𝐴 which is totally ordered w.r.t.

≤. The layer of an element 𝑎 ∈ 𝐴 is the size of the largest chain of ≤ which includes 𝑎 but no

elements smaller than 𝑎, and a maximal element. For instance, the layer of a maximal element is 1

(the aforementioned largest chain includes just the element itself), the level of a strict predecessor

of a maximal element is 2, and so on. A subset 𝐵 ⊆ 𝐴 is called 𝑘-maximally layered w.r.t. ≤ if 𝐵 is

the set of all elements in 𝐴 of layer 𝑘 ′ ≤ 𝑘 . When ≤ is also a total order, the notion of maximally

layered is equivalent to being upward closed w.r.t. ≤. Otherwise, it is equivalent to being upward

closed w.r.t. every total extension of ≤.
A read specification rspec is 𝑘-maximally layered w.r.t. ar (resp. rb+) if for every object 𝑥 , context

𝑐 = {𝐸, rb, ar}, and event 𝑒 , either rspec(𝑒) (𝑥, 𝑐) = ∅ or rspec(𝑒) (𝑥, 𝑐) is 𝑘-maximally layered w.r.t.

ar (resp. rb+). The layer bound of rspec is defined as 𝑘 . To cover cases where there is no such 𝑘 , we

say that a read specification rspec is∞-maximally layered if for every 𝑥 , context 𝑐 = {𝐸, rb, ar}, and
event 𝑒 , either rspec(𝑒) (𝑥, 𝑐) = ∅ or 𝐸; and we say that the layer bound is∞. When the layer bound

and the partial order (ar or rb+) are irrelevant, we simply say that rspec is maximally layered.

Example 7.10. For example, faacas is 1-maximally layered w.r.t. ar, k-mv is 1-maximally layered
w.r.t. rb+ and counter is∞-maximally layered. On the other hand, the read specification in Example 7.9
is not maximally layered since it can sometimes return init from a non-empty context.

Lemma 7.11. Let OpSpec be a maximall-layered operation specification and let CMod1,CMod2 be
a pair of consistency models such that CMod2 is stronger than CMod1. Any abstract execution valid
w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Operation Closure. As in Section 4.2, we assume that OpSpec contains at least a read and a

write event. Also, we assume that all objects support a common set of operations with identical

read and write behavior, and that these operations can be executed at any replica. Formally, for

every event 𝑒 ∈ 𝐸, replica r, and identifier id, there exists an event 𝑒′ s.t. rep(𝑒′) = r, id(𝑒′) = id,
obj(𝑒′) = obj(𝑒), rspec(𝑒′) = rspec(𝑒), extract(𝑒′) = extract(𝑒), and wspec(𝑒′) = wspec(𝑒).
We also assume that operations apply uniformly to any set of objects. To formalize this as-

sumption, we define a notion of domain for an operation specification OpSpec which is any set

of objects 𝐷 s.t. there is an event 𝑒 ∈ Events[OpSpec] for which obj(𝑒) = 𝐷 . We assume that

domains are “symmetric”, i.e. if 𝐷 is a domain for OpSpec, then for every pair of objects 𝑥 ∈ 𝐷 and

𝑦 ∈ Objs\𝐷 , the set 𝐷 ′ = 𝐷 \ {𝑥}∪ {𝑦} is also a domain forOpSpec. IfOpSpec allows single-object

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:23

read/write/read-write events (defined as in Section 4.2), we assume that for every object 𝑥 , there

exists a read/write/read-write event whose domain is {𝑥}. Also, we assume that if OpSpec allows a
multi-object read/write/read-write event 𝑒 such that obj(𝑒) is a finite set of size at least 2, then for

every non-empty finite set 𝐷 ⊆ Objs, 𝐷 is a domain of a read/write/read-write event in OpSpec.
Correctors. In addition, we assume that if OpSpec permits conditional read-write events–which

write to a set of objects 𝑋 based on values they read (possibly from other objects) in some context–

then any execution can be extended with some conditional read-write event 𝑒 that writes to every

object in 𝑋 , modulo a so-called correction defined below. This property is only relevant for events

with |obj(𝑒) | > 1 (and therefore, irrelevant for basic storage specifications). Our proof will rely on

the existence of such extensions.

Example 7.12. To provide some intuition about the need for corrections, consider a specification
formed of prefix consistency (PC) and an operation specification with two multi-object operations,
InsAbs and DelPre, under Last-Writer-Wins (LWW) conflict resolution (i.e., the read specification
selects the maximal invocation from the context w.r.t. ar) (see Appendix A.4). InsAbs(𝑋, 𝑣) checks
for every object 𝑥 ∈ 𝑋 if it is present, and inserts it with value 𝑣 if not, and DelPre(𝑋) deletes every
object 𝑥 ∈ 𝑋 as long as it was present.Assume an abstract execution 𝜉 , and an event 𝑒 from 𝜉 whose
context implies that 𝑥 is absent and 𝑦 is present. If 𝑒 is an invocation of InsAbs (resp., DelPre), then it
can not write both objects since 𝑥 is absent and 𝑦 is present.

We introduce the notion of corrector, a set of auxiliary events that modify the context, ensuring

the existence of an event that can write to both objects. For instance, in the scenario presented

in Example 7.12, if 𝑒 is an invocation of InsAbs({𝑥,𝑦}, 1), the corrector will add a DelPre({𝑦})
invocation in its context, so both objects are absent.

We start by defining some notations. Let Spec = (CMod,OpSpec) be a storage specification,
𝜉 = (ℎ, rb, ar) an abstract execution of a history ℎ = (𝐸, so,wr), and 𝑒 ∈ 𝐸 an event. A correction
of 𝑒 in 𝜉 with an event 𝑎, denoted by 𝜉

𝑎
⋎ 𝑒 , is an abstract execution 𝜉 ′ = (ℎ′, rb′, ar′) associated

to a history ℎ′ = (𝐸 ∪ {𝑎}, so′,wr′) obtained by adding 𝑎 as the immediate rb-predecessor and
ar-predecessor of 𝑒 . If rep(𝑒) = rep(𝑎), then 𝑎 is also the immediate so-predecessor of 𝑒 . The
write-read dependencies (wr−1) of every event in 𝜉 remain the same. Multiple corrections exist

because the write-read and receive-before dependencies of 𝑎 are not constrained. This allows

flexibility on correcting 𝜉 while preserving validity w.r.t. Spec.

The correction of 𝜉 with a sequence of events ®s = (𝑎1, 𝑎2, . . .), denoted by 𝜉
®s
⋎ 𝑒 , is defined as

expected, by iteratively correcting 𝜉 with all events in ®s in the order defined by ®s. Therefore, if 𝑒′ is
the immediate ar-predecessor of 𝑒 in 𝜉 , the ar order in 𝜉

®s
⋎ 𝑒 will have 𝑎1, 𝑎2, . . . inserted in between

𝑒′ and 𝑒 (in this order). Similarly for rb and possibly for so.
For a (partial) mapping 𝑓 : 𝐴 → 𝐵 and a total order < over 𝐴, the sequence of elements

in 𝐵 mapped by 𝑓 and ordered according to < is denoted by seq< (𝑓). Formally, seq< (𝑓) =

(𝑓 (𝑎1), 𝑓 (𝑎2), . . .) such that 𝑓 (𝑎𝑖) ↓ and 𝑎𝑖 < 𝑎𝑖+1 for all 𝑖 . We omit the subscript < when it is

understood from the context.

Also, if 𝜉 is an abstract execution, then 𝜉⊕𝑒 is an abstract execution obtained from 𝜉 by appending

𝑒 to 𝜉 as the last event w.r.t. ar.
Corrector Assumption. If OpSpec allows conditional read-writes, then we assume that for every

domain 𝐷 ,𝑊 ⊆ 𝐷 , 𝑥 ∈ Objs s.t. 𝑥 ∈𝑊 if𝑊 ≠ ∅, and abstract execution 𝜉 , there exists

(1) a conditional read-write 𝑒 with obj(𝑒) = 𝐷 which is not contained in 𝜉 , and

(2) a partial mapping 𝑎 : 𝐷 \ {𝑥} → Events called execution-corrector for event 𝑒 in an abstract

execution 𝜉 ⊕ 𝑒 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:24 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

We define execution-correctors as follows.

Definition 7.13. Let Spec = (CMod,OpSpec) be a storage specification, 𝜉 an abstract execution, 𝑒 a
conditional read-write event from 𝜉 with obj(𝑒) = 𝐷 ,𝑊 ⊆ 𝐷 a set of objects, and 𝑥 ∈ 𝐷 an object s.t.
𝑥 ∈𝑊 if𝑊 ≠ ∅. Also, let < be a fixed total order on the set of objects. An execution-corrector for
(𝑒,𝑊 , 𝑥, 𝜉) is a partial mapping 𝑎 : 𝐷 \ {𝑥} → Events such that if

𝜉 ′ = 𝜉
seq(𝑎)
⋎ 𝑒 and 𝜉 ′ ↾ 𝑦 = (𝜉

seq(𝑎↾𝑦)
⋎ 𝑒) \ {𝑒} where 𝑎 ↾ 𝑦 = 𝑎 ↾{𝑧∈Dom(𝑎) | 𝑧≤𝑦},

then the following hold:
(1) for every 𝑦 ∈ 𝐷 \ {𝑥}, if 𝑎(𝑦) is defined and the correction up to 𝑎(𝑦) is valid w.r.t. Spec, then

𝑎(𝑦) writes only 𝑦 in the correction: if 𝑎(𝑦) ↓ and 𝜉 ′ ↾ 𝑦 is valid w.r.t. Spec, then for every object
𝑧 ∈ Objs, wspec(𝑎(𝑦)) (𝑧, [𝜉 ′ ↾ 𝑦,CMod]) ↓ iff 𝑧 = 𝑦, and

(2) for every 𝑦 ∈ 𝐷 , if the correction is valid w.r.t. Spec, then 𝑒 reads 𝑦 and additionally, 𝑒 writes 𝑦
only if 𝑦 ∈𝑊 , i.e., rspec(𝑒) (𝑦, [𝜉 ′,CMod]) ≠ ∅ and wspec(𝑒) (𝑦, [𝜉 ′,CMod]) ↓ iff 𝑦 ∈𝑊 .

Example 7.14. We illustrate execution-correctors for the storage specification presented in Exam-
ple 7.12, with InsAbs and DelPre as operations and PC as consistency model.

Let 𝜉 be an abstract execution, 𝑒 a DelPre(𝐷) event from 𝜉 ,𝑊 ⊆ 𝐷 a non-empty set of objects and
𝑥 ∈𝑊 . For every object 𝑦, let𝑤𝑦 be the last event from the “read” context of 𝑒 w.r.t. PC which writes
𝑦 (by read context we mean the set of events selected by rspec from the context). In the following we
assume that 𝑤𝑥 is an insert event. Note that if 𝑤𝑥 is a delete event, then there exists no execution-
corrector for 𝑒 (intuitively, the correction concerns objects different from 𝑥 , and DelPre(𝐷) will not
delete an object which is already deleted).
An execution-corrector for (𝑒,𝑊 , 𝑥, 𝜉) is the mapping 𝑎 : 𝐷 \ {𝑥} → Events defined below. The

mapping 𝑎 observes the update on 𝑦 made by 𝑤𝑦 , and overwrites it when necessary. Thus, when 𝑒
reads 𝑦, 𝑦 is present iff 𝑦 ∈𝑊 .

𝑎(𝑦) =


InsAbs({𝑦}, 𝑣) if 𝑦 ∈𝑊 and𝑤𝑦 deletes 𝑦 in 𝜉
DelPre({𝑦}) if 𝑦 ∉𝑊 and𝑤𝑦 inserts 𝑦 in 𝜉
undefined otherwise

(21)

Observe that requiring that 𝑎 is defined for all objects in 𝐷 is too strict: if the read specification

has a layer-bound of 1 and the events read a single object (as faacas), any correction will change

the entire context read by 𝑒 .

8 The Arbitration-Free Consistency Theorem
We now present our main result in its most general form, which extends Theorem 6.3.

Theorem 8.1 (Arbitration-Free Consistency (AFC)). Let Spec = (CMod,OpSpec) be a storage
specification. The following statements are equivalent:
(1) CMod is arbitration-free w.r.t. OpSpec,
(2) there exists an available OpSpec-implementation.

The proof of (1)⇒ (2) is very similar to that in Theorem 6.3 (see Section 6.1). The only difference

is replacing Lemma 6.5 with Lemma 7.11 where we use the maximally-layered assumption of read

specifications. For the reverse, we follow the reasoning explained in the beginning of Section 6.2 to

reduce to consistency models in normal form. Lemma 8.2 extends the arguments in Lemma 6.7 to

generalized storage specifications.

Lemma 8.2. Let Spec = (CMod,OpSpec) be a storage specification. Assume that CMod contains a
simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some 𝑖, 0 ≤ 𝑖 ≤ len(v),
Relv𝑖 = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:25

init

. . .𝑒
𝑥0
0

. . .A𝑥0
1

. . .

. . .A𝑥0
𝑑𝑣−1

. . .𝑒
𝑥0
𝑑𝑣−1

. . .A𝑥0
𝑑𝑣

. . .𝑒
𝑥1
𝑑𝑣

. . .A𝑥0
𝑑𝑣+1

. . .

. . .A𝑥0len(𝑣)

. . .𝑒
𝑥1
len(𝑣)

. . . 𝑒
𝑥1
0

. . . A𝑥1
1

. . .

. . . A𝑥1
𝑑𝑣−1

. . . 𝑒
𝑥1
𝑑𝑣−1

. . . A𝑥1
𝑑𝑣

. . . 𝑒
𝑥0
𝑑𝑣

. . . A𝑥1
𝑑𝑣+1

. . .

. . . A𝑥1len(𝑣)

. . . 𝑒
𝑥0
len(𝑣)

writes 𝑥0

do not write 𝑥0

reads 𝑥0

may write 𝑥0

corrector(s) of 𝑒𝑥1
𝑑𝑣

so so

so

so
Rel𝑣

1

so

so
Rel𝑣

𝑑𝑣−1

so

so

so

so
Rel𝑣

𝑑𝑣

so

so
Relvlen(𝑣)

so

so
Rel𝑣

1

so

so
Rel𝑣

𝑑𝑣−1

so

so

so

so
Rel𝑣

𝑑𝑣

so

so
Relvlen(𝑣)

ar

ar

rb

Fig. 9. Abstract execution of a trace without receive actions for the visibility formula v. A𝑥𝑙
𝑖

represents a
sequence of events 𝑎𝑥𝑙

𝑖
(𝑦), 𝑦 ∈ obj(𝑒𝑥𝑙

𝑖
) associated to an execution-corrector. The auxiliary events in A𝑥𝑙

𝑖
allow

that, if (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar, wrConsv𝑥 (𝑒

𝑥0
0
, . . . 𝑒

𝑥0
len(v)) holds, and thus 𝑣𝑥0 (𝑒

𝑥0
0
, 𝑒
𝑥0
len(v)) holds as well.

Proof Sketch. As in Lemma 6.7, we assume by contradiction that there is an available imple-

mentation 𝐼𝐸 of Spec. We use the visibility formula v to construct a specific program, which by

the assumption, admits a trace (in the composition with this implementation) that contains no

receive action. We show that any abstract execution induced by this trace, which is admissible by

any available implementation of Spec, is not valid w.r.t. Spec. This contradicts the hypothesis.
Let 𝑑v be the largest index 𝑖 s.t. Relv𝑖 = ar (last occurrence of ar). Then, v is formed of two parts:

the path of dependencies from 𝜀0 to 𝜀𝑑v which is not arbitration-free, and the suffix from 𝜀𝑑v up to

𝜀len(v) , the arbitration-free part.
The program 𝑃 that we construct uses two replicas 𝑟0, 𝑟1, two objects 𝑥0, 𝑥1 and a collection of

events 𝑒
𝑥𝑙
𝑖
, 0 ≤ 𝑖 ≤ len(v), 𝑙 ∈ {0, 1}. The events are used to “encode” two instances of v𝑥0 and v𝑥1 .

Replica 𝑟𝑙 executes first events 𝑒
𝑥𝑙
𝑖

with 𝑖 < 𝑑v and then, events 𝑒
𝑥1−𝑙
𝑖

with 𝑖 ≥ 𝑑v – the replica 𝑟𝑙
executes the non arbitration-free part of v for object 𝑥𝑙 and the arbitration-free suffix of v for 𝑥1−𝑙 .
For every 𝑙 , the event 𝑒

𝑥𝑙
len(v) reads 𝑥1−𝑙 .

For ensuring that v𝑥 (𝑒𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
𝑛) holds in an induced abstract execution of a trace without receive

actions, we require that if Relv𝑖 = wr, then 𝑒𝑥𝑙
𝑖−1 is a write event and 𝑒

𝑥𝑙
𝑖

is a read event. For ensuring

that wrConsv𝑥 (𝑒0, . . . 𝑒len(v)) holds in such an abstract execution, for each set 𝐸 ∈ P(𝜀0, . . . 𝑒len(v))
s.t. conflict (𝐸) occurs in v, we consider a distinct object 𝑦𝐸 , which is also distinct from 𝑥0 and 𝑥1.

These objects represent each conflict in v in a distinct manner. Then, we require that events 𝑒
𝑥𝑙
𝑖

write to object 𝑦𝐸 iff 𝜀𝑖 ∈ 𝐸 and to object 𝑥𝑙 iff 𝜀𝑖 belongs to the set 𝐸𝑥 s.t. conflict𝑥 (𝐸𝑥) occurs in
v (since v is conflict-maximal, there is only one occurrence of a conflict𝑥 predicate). In the case

𝑒
𝑥𝑙
𝑖

is a conditional read-write, we add a set of events 𝐴
𝑥𝑙
𝑖

that form an execution-corrector so

conflict𝑥 (𝑒𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
len(v)) holds in an abstract execution of a trace without receive actions. These

additional events do not write on objects 𝑥0 or 𝑥1.

Figure 9 exhibits a diagram of the abstract execution of the program.

The rest of the proof, which proceeds as follows, is a generalization of the proof of Lemma 6.7

which takes into considerations the assumptions we make about storage specifications:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:26 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

(1) There exists a finite trace 𝑡 of 𝑃 𝐼𝐸 that contains no receive action (Lemma C.5).

(2) The trace 𝑡 induces a history ℎv = (𝐸, so,wr) and an abstract execution 𝜉v = (ℎ, rb, ar) where
rb = so. As 𝐼𝐸 is valid w.r.t. Spec, 𝜉v is valid w.r.t. Spec. Next, we prove that since rb = so,
events in 𝜉v read the latests value w.r.t. so for any object. In particular, we deduce that 𝜉𝑣 is

valid w.r.t. (CC,OpSpec) (Corollary D.5).

(3) Since ar is a total order, either (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar or (𝑒𝑥1

𝑑v−1, 𝑒
𝑥0
𝑑v−1) ∈ ar. W.l.o.g., assume that

(𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar. By Proposition D.6, we deduce that 𝑒

𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(v) , [𝜉v,CMod]). The

proof is explained in Figure 9: if (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar, then all events 𝑒

𝑥0
𝑖

form a path in such

way that v𝑥0 (𝑒
𝑥0
0
, . . . 𝑒

𝑥0
len(v)) holds in 𝜉v. If some event 𝑒

𝑥𝑙
𝑖

is a conditional read-write event,

the predicate conflict𝑥 (𝑒𝑥0
0
, . . . 𝑒

𝑥0
len(v)) holds in 𝜉v thanks to the corrector events 𝐴

𝑥𝑙
𝑖
.

(4) As 𝑒
𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(𝑣) , [𝜉v,CMod]) but (𝑒𝑥0

0
, 𝑒

𝑥0
len(v)) ∉ rb (no message is received), we deduce

in Proposition B.16that OpSpec is layered w.r.t. ar. By contrapositive, if OpSpec would

be layered w.r.t. rb, as 𝑒𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(v) , [𝜉v,CMod]), there would exist an event 𝑒 s.t.

(𝑒𝑥0
0
, 𝑒) ∈ rb and 𝑒 ∈ rspec(𝑒𝑥0len(v)) (𝑥0, [𝜉v,CMod]). However, as rb = so, rep(𝑒𝑥0

0
) = rep(𝑒) =

rep(𝑒𝑥0len(v)) which is false because rep(𝑒𝑥0
0
) = 𝑟0 and rep(𝑒𝑥0len(v)) = 𝑟1.

(5) Since rspec is maximally layered, we can show that the layer bound of rspec is smaller than

or equal to the number of arbitration-free suffixes of v (Proposition B.17). Observe that an

event writes 𝑥0 only if it is init or is an event 𝑒
𝑥𝑙
𝑖

s.t. 𝜀𝑖 ∈ 𝐸𝑥 and 𝑙 = 0. Any such index 𝑖

corresponds to a suffix of v. By causal suffix closure, for any arbitration-free suffix 𝑣 ′ of 𝑣
there is a visibility formula that subsumes 𝑣 ′ in nCModOpSpec. As 𝑑v is the maximum index

for which Relv𝑖 = ar, the number of events writing 𝑥0 in replica 𝑟1 distinct from init coincide
with the number of arbitration-free suffixes of v. Hence, as rspec is layered w.r.t. ar, if its
layer bound would be greater than the number of arbitration-free suffixes, 𝑒

𝑥0
len(v) would

necessarily read 𝑥0 from init (other events writing 𝑥0 are in replica 𝑟0 and 𝑒len(v) only reads

from events in 𝑟1). However, as rspec is maximally-layered and 𝑒
𝑥0
0

succeeds initw.r.t. ar and
rb+, we would conclude that 𝑒

𝑥0
len(v) would also read 𝑥0 from 𝑒

𝑥0
0
. However, this is impossible

as wr ⊆ rb = so but 𝑒
𝑥0
0

is in replica 𝑟0 and 𝑒
𝑥0
len(v) is in replica 𝑟1.

(6) Lastly, we show in Proposition B.18 that if the layer bound of rspec is smaller than or equal to

the number of arbitration-free suffixes of 𝑣 , then 𝑣 is vacuous w.r.t.OpSpec, which contradicts
the fact that v is a visibility formula from the normal form nCModOpSpec. □

Corollary 8.3 is an immediate consequence of Theorem 8.1 and Lemma 6.4.

Corollary 8.3. Let OpSpec be an operation specification. The strongest consistency model CMod for
which (CMod,OpSpec) admits an available implementation is CC.

9 Related Work and Discussion
The CAP conjecture [13] claims that a distributed key-value store cannot be both consistent,

available and tolerate partitions. The proof of the CAP theorem [18], uses a so-called split brain
behavior, where two sets of replicas are isolated from each other, and a get (read) operation misses

the result of an earlier set (write) operation (which completes before the get starts). We remark that

our proof in section 2 actually extends the proof of the CAP theorem so it holds without the real

-time requirement used in the original proof [18].

As pointed by some critiques of the CAP theorem (e.g., [21]), the proof equates consistency with

atomicity of read / write variables. Moreover, network partitioning is a stand-in for end-to-end

delays in geo-distributed systems. The PACELC (if Partition then Availability or Consistency, Else
Latency or Consistency) theorem [1] (see [19]) captures these observations; its proof extends results

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:27

proved for sequential consistency [8, 24]. These results are also proved for read / write variables,

capturing key-value stores. In the executions we construct, messages between replicas are delayed,

in a way that corresponds to split brain behavior, and our emphasis is on constructing the right

interaction sequences. We believe this behavior can be used to extend the AFC theorem so it talks

about latency, rather than availability, for the same interaction sequences.

The CALM (consistency as logical monotonicity) conjecture [20] relates monotonicity of queries

to lack of coordination. Informally, it states that a query has a coordination-free execution strategy

if and only if it is monotonic. In order to make this statement more concrete, it is necessary do

define what coordination freedom means. In their proof of the CALM theorem, Ameloot et al. [6]

equate coordination-freedom with the ability of clients to produce an output even when there is no

communication between replicas. The proof relies on a split brain behavior, somewhat similar to the

one used in the CAP theorem [18]. Extensions of this theorem [5] equip replicas with knowledge

of the data distribution. The CALM theorem is motivated, in part, by Bloom [4], a programming

language that encourages order-insensitive programming. The applications they present are to key-

value stores and to a shopping cart, essentially, a counter. Later work extends the CALM approach

to a programming environment for composing small lattices [4], and relates it to CRDTs [22].

One key challenge in deriving our result is considering abstract, generic consistency models,

while prior work considers specific models. The other challenge is to allow their composition

with abstract, generic shared objects, while prior work mostly consider key-value stores. On the

possibility side, this is facilitated by the relating arbitration-freeness to causality; the necessity side

relies on finding carefully-designed client interactions that “stress” dependencies between replicas.

Defining available implementations for causal consistency has been considered in several

works [9, 10, 25, 26]. The work of Attiya et al. [7] and Mahajan et al. [27] show that, in the

case of multi-value registers, consistency models stronger than causal consistency cannot support

available implementations. In [7] the condition is observable causal consistency (OCC) whereas

in [27] the condition is real-time causal consistency (RTC). The definition of both OCC and RTC

are specific to multi-value registers, and the impossibility result depends on several restrictions

that we do not consider. Both papers make some (nontrivial, but different) assumptions about the

implementations. Furthermore, both of them do not truly prove a tight result: while both [7, 27]

prove the positive result for CC, in [7], the impossibility is proved for OCC, and in [27] it is for RTC

(both stronger than CC). Besides handling a more general class of operations, the AFC theorem is a

strengthening of their results, as it applies to causal consistency and is therefore tight.

Our specification framework builds on previous work [11, 14, 15, 17]. Similarly to Burckhardt

et al. [14, 15], storage system specifications decouple consistency from the object semantics. We

re-use the same ideas of defining consistency using visibility formulas, contexts, and an arbitration

relation. Our object semantics is split into several semantical functions (rspec, extract, and wspec)
in order to be more general (modeling transactions), and be able to express “normal” constrains. The

extension to transaction isolation levels is similar to Cerone et al. [17] and Biswas and Enea [11].

The works of [11, 12] study the complexity of checking consistency under different scenarios.

There is no apparent relation between the complexity of checking consistency and the existence

of available implementations: the AFC theorem shows that Read Committed admits available

implementations but Sequential Consistency does not whereas [12] shows that checking consistency

of an SQL history under Read Committed (equivalent to Return-Value) or Sequential Consistency

is NP-complete (inclusion in NP is trivial for any model).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:28 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Acknowledgements
We thank the anonymous reviewers for their feedback. Hagit Attiya is supported by the Israel

Science Foundation (22/1425 and 25/1849). Constantin Enea is partially supported by the French

National Research Agency (project “CENTEANES”).

References
[1] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed Database System Design: CAP is Only Part of the

Story. Computer 45, 2 (2012), 37–42. https://doi.org/10.1109/MC.2012.33

[2] A. Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed Transactions.
Ph. D. Dissertation.

[3] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. 2000. Generalized Isolation Level Definitions. In Proceedings of the
16th International Conference on Data Engineering, San Diego, California, USA, February 28 - March 3, 2000, David B.

Lomet and Gerhard Weikum (Eds.). IEEE Computer Society, 67–78. https://doi.org/10.1109/ICDE.2000.839388

[4] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency Analysis in Bloom: a

CALM and Collected Approach. In Fifth Biennial Conference on Innovative Data Systems Research, CIDR 2011, Asilomar,
CA, USA, January 9-12, 2011, Online Proceedings. www.cidrdb.org, 249–260. http://cidrdb.org/cidr2011/Papers/CIDR11_

Paper35.pdf

[5] Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. 2015. Weaker Forms of Monotonicity for Declarative

Networking: A More Fine-Grained Answer to the CALM-Conjecture. ACM Trans. Database Syst. 40, 4, Article 21 (Dec.
2015), 45 pages. https://doi.org/10.1145/2809784

[6] Tom J. Ameloot, Frank Neven, and Jan Van Den Bussche. 2013. Relational transducers for declarative networking. J.
ACM 60, 2, Article 15 (May 2013), 38 pages. https://doi.org/10.1145/2450142.2450151

[7] Hagit Attiya, Faith Ellen, and Adam Morrison. 2017. Limitations of Highly-Available Eventually-Consistent Data

Stores. IEEE Trans. Parallel Distrib. Syst. 28, 1 (Jan. 2017), 141–155. https://doi.org/10.1109/TPDS.2016.2556669

[8] Hagit Attiya and Jennifer L. Welch. 1994. Sequential Consistency versus Linearizability. ACM Trans. Comput. Syst. 12,
2 (1994), 91–122. https://doi.org/10.1145/176575.176576

[9] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2012. The Potential Dangers of Causal

Consistency and an Explicit Solution. In Proceedings of the 3rd ACM Symposium on Cloud Computing. http://doi.acm.

org/10.1145/2391229.2391251

[10] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on Causal Consistency. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. 761–772. http://doi.acm.org/10.1145/2463676.

2465279

[11] Ranadeep Biswas and Constantin Enea. 2019. On the complexity of checking transactional consistency. Proc. ACM
Program. Lang. 3, OOPSLA (2019), 165:1–165:28. https://doi.org/10.1145/3360591

[12] Ahmed Bouajjani, Constantin Enea, and Enrique Román-Calvo. 2025. On the Complexity of Checking Mixed Isolation

Levels for SQL Transactions. In Computer Aided Verification - 37th International Conference, CAV 2025, Zagreb, Croatia,
July 23-25, 2025, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 15934), Ruzica Piskac and Zvonimir

Rakamaric (Eds.). Springer, 315–337. https://doi.org/10.1007/978-3-031-98685-7_15

[13] Eric A. Brewer. 2000. Towards robust distributed systems (Invited Talk). In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing. New York, NY, USA. https://doi.org/10.1145/343477.343502

[14] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends Program. Lang. 1, 1-2 (2014), 1–150.
https://doi.org/10.1561/2500000011

[15] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types: specification,

verification, optimality. In 41st Symposium on Principles of Programming Languages, POPL. ACM, 271–284. https:

//doi.org/10.1145/2535838.2535848

[16] Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. 2015. Global Sequence Protocol:

A Robust Abstraction for Replicated Shared State. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs, Vol. 37), John Tang Boyland (Ed.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 568–590. https://doi.org/10.4230/LIPICS.ECOOP.2015.568

[17] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consistency Models

with Atomic Visibility. In 26th International Conference on Concurrency Theory, CONCUR. 58–71. https://doi.org/10.

4230/LIPICS.CONCUR.2015.58

[18] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant

Web Services. SIGACT News 33, 2 (June 2002), 51–59. https://doi.org/10.1145/564585.564601

[19] Wojciech M. Golab. 2018. Proving PACELC. SIGACT News 49, 1 (2018), 73–81. https://doi.org/10.1145/3197406.3197420

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

https://doi.org/10.1109/MC.2012.33
https://doi.org/10.1109/ICDE.2000.839388
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1145/2809784
https://doi.org/10.1145/2450142.2450151
https://doi.org/10.1109/TPDS.2016.2556669
https://doi.org/10.1145/176575.176576
http://doi.acm.org/10.1145/2391229.2391251
http://doi.acm.org/10.1145/2391229.2391251
http://doi.acm.org/10.1145/2463676.2465279
http://doi.acm.org/10.1145/2463676.2465279
https://doi.org/10.1145/3360591
https://doi.org/10.1007/978-3-031-98685-7_15
https://doi.org/10.1145/343477.343502
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.4230/LIPICS.ECOOP.2015.568
https://doi.org/10.4230/LIPICS.CONCUR.2015.58
https://doi.org/10.4230/LIPICS.CONCUR.2015.58
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3197406.3197420

Arbitration-Free Consistency Is Available (and Vice Versa) 41:29

[20] Joseph M. Hellerstein. 2010. The declarative imperative: Experiences and conjectures in distributed logic. SIGMOD
Rec. 39, 1 (Sept. 2010), 5–19. https://doi.org/10.1145/1860702.1860704

[21] Martin Kleppmann. 2015. A Critique of the CAP Theorem. CoRR abs/1509.05393 (2015). arXiv:1509.05393 http:

//arxiv.org/abs/1509.05393

[22] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks, and Joseph M. Hellerstein. 2022. Keep

CALM and CRDT On. Proc. VLDB Endow. 16, 4 (2022), 856–863. https://doi.org/10.14778/3574245.3574268

[23] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558–565. https://doi.org/10.1145/359545.359563

[24] Richard J Lipton and Jonathan S Sandberg. 1988. PRAM: A scalable shared memory. Technical Report TR-180-88.
Princeton University, Department of Computer Science.

[25] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable

Causal Consistency for Wide-area Storage with COPS. In Proceedings of the 23rd ACM Symposium on Operating Systems
Principles. 401–416. http://doi.acm.org/10.1145/2043556.2043593

[26] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger Semantics for Low-

Latency Geo-Replicated Storage. In Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, Nick Feamster and Jeffrey C. Mogul (Eds.). USENIX

Association, 313–328. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd

[27] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. 2011. Consistency, availability, and convergence. University of
Texas at Austin Tech Report 11 (2011), 158.

[28] Microsoft. 2022. Consistency Levels in Azure Cosmos DB. https://docs.microsoft.com/en-us/azure/cosmos-db/

consistency-levels.

[29] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free Replicated Data Types. In

Stabilization, Safety, and Security of Distributed Systems SSS, Vol. 6976. Springer, 386–400. https://doi.org/10.1007/978-

3-642-24550-3_29

[30] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems.

In Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, Ted Wobber and Peter Druschel (Eds.). ACM, 385–400. https://doi.org/10.1145/2043556.2043592

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

https://doi.org/10.1145/1860702.1860704
https://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393
http://arxiv.org/abs/1509.05393
https://doi.org/10.14778/3574245.3574268
https://doi.org/10.1145/359545.359563
http://doi.acm.org/10.1145/2043556.2043593
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1145/2043556.2043592

41:30 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

A Examples of Operation Specifications
We present here several well-know operation specifications.

A.1 Key-Value Store with Fetch-And-Add and Compare-And-Swap Operations
The Key-Value Store with Fetch-And-Add and Compare-And-Swap (faacas) is an operation speci-

fication with four operations, PUT(𝑥, 𝑣), that puts value 𝑣 to object 𝑥 , GET(𝑥) that reads object 𝑥 ,
FAA(𝑥, 𝑣) that reads the value 𝑣 ′ of object 𝑥 and writes 𝑣 ′ + 𝑣 , and CAS(𝑥, 𝑣, 𝑣 ′), that reads 𝑥 and

writes 𝑣 ′ iff the value read is 𝑣 .

The following equations, corresponding to Equations (11), (14) and (17), describe the operation

specification of faacas.

rspec(𝑟) (𝑥, 𝑐) =
{
{maxar 𝐸} if 𝑟 ∈ {GET(𝑥), FAA(𝑥, 𝑣), CAS(𝑥, 𝑣 ′, 𝑣 ′′)} and 𝑐 = (𝐸, ar, rb)
∅ otherwise

(22)

extract(𝑟) (𝑥, 𝑅) =
{
𝑣 if 𝑟 ∈ {GET(𝑥), FAA(𝑥, 𝑣), CAS(𝑥, 𝑣, 𝑣 ′)} and 𝑅 = {(𝑤, 𝑣)}
undefined otherwise

(23)

wspec(𝑤) (𝑥, 𝑣) =


𝑣 ′ if𝑤 = PUT(𝑥, 𝑣 ′)
𝑣 + 𝑣 ′ if𝑤 = FAA(𝑥, 𝑣 ′)
𝑣 ′′ if𝑤 = CAS(𝑥, 𝑣 ′, 𝑣 ′′) ∧ 𝑣 = 𝑣 ′
undefined otherwise

(24)

The faacas is maximally layered w.r.t. ar, with 1 as its layer bound. As CAS is a single-object

conditional read-write operation, it trivially allows execution-correctors.

A.2 Key-Value Multi-Value Store
The Key-Value Multi-Value Store (k-mv) [7, 15] is an operation specification with two operations,

GET(𝑥), reading multiple concurrent values on a single object 𝑥 , and PUT(𝑥, 𝑣), writing on a single

object 𝑥 the value 𝑣 .

The following equations, corresponding to Equations (12), (14) and (17), describe the operation

specification of k-mv.

rspec(𝑟) (𝑥, 𝑐) =
{
{maxrb 𝐸} if 𝑟 = GET(𝑥) and 𝑐 = (𝐸, ar, rb)
∅ otherwise

(25)

extract(𝑟) (𝑥, 𝑅) =
{
{𝑣 | (_, 𝑣) ∈ 𝑅} if 𝑟 = GET(𝑥)
undefined otherwise

(26)

wspec(𝑤) (𝑥, _) =
{
𝑣 if𝑤 = PUT(𝑥, 𝑣)
undefined otherwise

(27)

The k-v is maximally layered w.r.t. rb+, with 1 as its layer bound.

A.3 Distributed Counter
The distributed counter (counter) [15] is an operation specification with two operations, inc(𝑥),
incrementing the value of 𝑥 by 1, and rd(𝑥), reading the amount of increments of 𝑥 .

The following equations, corresponding to Equations (13), (16) and (19), describe the operation

specification of counter.

rspec(𝑟) (𝑥, 𝑐) =
{
𝐸 if 𝑟 = rd(𝑥) and 𝑐 = (𝐸, ar, rb)
∅ otherwise

(28)

extract(𝑟) (𝑥, 𝑅) =
{

|𝑅 | − 1 if 𝑟 = rd(𝑥)
undefined otherwise

(29)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:31

wspec(𝑤) (𝑥, _) =
{
1 if𝑤 = inc(𝑥)
undefined otherwise

(30)

The counter is maximally layered w.r.t. ar, with∞ as its layer bound.

A.4 Insert/Delete Last-Write-Wins
The Insert/Delete Last-Write-Wins (ins/del) is an operation specification with two multi-object

operations. InsAbs(𝑋, 𝑣) checks for every object 𝑥 ∈ 𝑋 if it is present, and inserts it with value 𝑣 if

not, and DelPre(𝑋) deletes every object 𝑥 ∈ 𝑋 as long as it was already present.

Its operation specification is described as follows:

rspec(𝑟) (𝑥, 𝑐) =
{
{maxar 𝐸} if 𝑟 ∈

{
InsAbs(𝑋, 𝑣), DelPre(𝑋)

}
, 𝑥 ∈ 𝑋 and 𝑐 = (𝐸, ar, rb)

∅ otherwise

(31)

extract(𝑟) (𝑥, 𝑅) =
{
𝑣 if𝑤 ∈ {InsAbs(𝑋, _), DelPre(𝑋)}, 𝑥 ∈ 𝑋 and 𝑅 = {(_, 𝑣)}
undefined otherwise

(32)

wspec(𝑤) (𝑥, 𝑣) =

𝑣 ′ if𝑤 = InsAbs(𝑋, 𝑣 ′) ∧ 𝑣 = †
† if𝑤 = DelPre(𝑋) ∧ 𝑣 ≠ †
undefined otherwise

(33)

where † is a special value representing absence. We assume that InsAbs(𝑋, †) is not defined.
The ins/del is maximally layered w.r.t. ar, with 1 as its layer bound. ins/del allows execution-

correctors: let CMod be a consistency model, 𝜉 be an abstract execution, 𝐷 be a domain,𝑊 ⊆ 𝐷 be

a set of objects and 𝑥 be an object s.t. 𝑥 ∈𝑊 if𝑊 ≠ ∅.
Let be 𝑣 the value that event 𝑒 reads in 𝜉 ⊕ 𝑒 . If 𝑣 = †, we select 𝑒 = InsAbs(𝐷, _) while otherwise,

𝑒 = DelPre(𝐷). The mapping 𝑎 below is an execution-corrector for (𝑒,𝑊 , 𝑥, 𝜉):

𝑎(𝑦) =


InsAbs({𝑦}, 𝑣 ′) if 𝑦 ∈𝑊 ∧ 𝑣𝑦 = † ≠ 𝑣, or 𝑦 ∉𝑊 ∧ 𝑣𝑦 = † = 𝑣

DelPre({𝑦}) if 𝑦 ∈𝑊 ∧ 𝑣𝑦 ≠ † = 𝑣, or 𝑦 ∉𝑊 ∧ 𝑣𝑦 ≠ † ≠ 𝑣

undefined otherwise

(34)

where 𝑣𝑦 = wspec(𝑒𝑝) (𝑦, [𝜉,CMod]) and 𝑒𝑝 is the maximal event w.r.t. so on the same replica as 𝑒 .

A.5 Non-Transactional SQL with Last-Writer-Wins Store
The Non-Transactional SQL with Last-Writer-Wins Store (simple-SQL) is an operation specification

modelling SQL-like databases [2]. Each object represents a row identifier and the set of values is

defined abstractly as Rows. Rows contain a special value denoted †, different from ⊥, indicating
that the row is deleted.

This operation specification employs four operations: INSERT, SELECT, UPSERT and DELETE. Each
operation has a finite set of objects 𝐷 as domain. INSERT(R) inserts in the database each row 𝑟

on an object 𝑑 ∈ 𝐷 using the mapping R : 𝐷 → Rows. SELECT(p) selects the rows on the storage

satisfying the predicate p : 𝐷 × Rows → {false, true}. UPSERT(p, U) updates the rows that satisfy
p using the mapping U : 𝐷 × Rows → Rows, inserting them if they are absent. Finally, DELETE(p),
deletes the objects satisfying the predicate (i.e. replaces its row by †). We assume that in for any

predicate p and object 𝑥 , p(𝑥, †) = false.

rspec(𝑟) (𝑥, 𝑐) =
{
{maxar 𝐸} if 𝑟 ∈ {SELECT(p), UPSERT(p, U), DELETE(p)} and 𝑐 = (𝐸, ar, rb)
∅ otherwise

(35)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:32 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

extract(𝑟) (𝑥, 𝑅) =
 𝑣

if 𝑟 ∈ {SELECT(p), UPSERT(p, U), DELETE(p)},
𝑅 = {(𝑤, 𝑣)} and p𝑥 (𝑣)

undefined otherwise

(36)

wspec(𝑤) (𝑥, 𝑣) =


R(𝑥) if𝑤 = INSERT(R)
U𝑥 (𝑣) if𝑤 = UPSERT(p, U)
† if𝑤 = DELETE(p) ∧ 𝑣 ∉ {⊥, †}
undefined otherwise

(37)

The simple-SQL is maximally layered w.r.t. ar, with 1 as its layer bound. simple-SQL allows

execution-correctors: let CMod be a consistency model, 𝜉 be an abstract execution, 𝐷 be a domain,

𝑊 ⊆ 𝐷 be a set of objects and 𝑥 be an object s.t. 𝑥 ∈𝑊 if𝑊 ≠ ∅.
Let be 𝑣 the value that event 𝑒 reads in 𝜉 ⊕ 𝑒 . We select the event 𝑒 = UPSERT(p𝐷,𝑊 , U𝐷), where

p𝐷,𝑊 and U𝐷 are defined below.

p𝐷,𝑊 (𝑑, 𝑟) =


true if 𝑑 ∈𝑊
false if 𝑑 ∈ 𝐷 \𝑊
undefined otherwise

U𝐷 (𝑑, 𝑟) =
{
𝑟 if 𝑑 ∈ 𝐷
undefined otherwise

For such event, we define the execution-corrector 𝑎 : 𝐷 \ {𝑥} → Events as the totally-undefined
mapping, i.e. the function that no object 𝑦 ∈ 𝐷 is associated with some event.

A.6 Transactional SQL Multi-Value Store
The Transactional SQL Multi-Value Store (SQL-mvr) is an operation specification modelling SQL-

like databases using transactions. Each object represents a row identifier and the set of values, Rows,
is defined as in Appendix A.5.

Transactions are blocks of simple instructions that are executed sequentially. Transactions start

its execution by selecting a snapshot of the database (i.e. a mapping associating each object a

constant value) from which operations can read. Each instruction may execute a writing operation,

but its effect it is only viewed internally. After their completion, the writing effects of the transaction

can be seen by other transactions; giving the impression of atomicity.

We model the store with the aid of a unique operation, TRANSACTION(body) that reads the
snapshot of the database and then executes the instructions declared in C. C is defined as a sequence
of five type of operations: INSERT, SELECT, UPDATE and DELETE. Each operation has a finite set

of objects 𝐷 as domain. INSERT(R) inserts in the database each row 𝑟 on an object 𝑑 ∈ 𝐷 using

the mapping R : 𝐷 → Rows. SELECT(p) selects the rows on the storage satisfying the predicate

p : 𝐷 × Rows → {false, true}. UPDATE(p, U) updates the rows that satisfy p using the mapping

U : 𝐷 × Rows → Rows. Finally, DELETE(p), deletes the objects satisfying the predicate (i.e. replaces
its row by †). abort represents states declared by the user where the transaction should not execute

anymore instructions and any declared write should be aborted.We assume that in for any predicate

p and object 𝑥 , p(𝑥, †) = false.
We model snapshots as mappings Objs → Vals. Unlike in Appendix A.5, SQL-mvr requires

that local effects of SQL-like instructions are only seen internally, during the execution of the

transaction. Such effects are modelled in Equation (38) as a recursive function that simulates the

transaction execution w.r.t. a concrete object. The function exe executes one instruction at a time,

and it stops whenever all instructions are executed, indicating that the execution was correct, or

halting it midway in case some abortion occurred (modelled with the constant value ⊥).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:33

exe𝑥 (body, 𝜎) =


exe𝑥 (body′, 𝜎 ′) if body = 𝑒; body′, 𝜎 ′ = exI𝑥 (𝑒, 𝜎) and 𝜎 ′ ≠ (⊥, false)
𝜎 if body = ∅
(⊥, false) otherwise

(38)

The behavior of each instruction is modelled in Equation (39), updating the snapshot in object 𝑥

in a similar way as wspec does in Appendix A.5, and indicating if the event 𝑒 indeed wrote object 𝑥 .

exI𝑥 (𝑒, (𝜎,w)) =



(𝜎,w) if 𝑒 = SELECT(p)
(𝜎,w) if 𝑒 = DELETE(p) ∧ ¬p𝑥 (𝜎)
(†, true) if 𝑒 = DELETE(p) ∧ p𝑥 (𝜎)
(𝜎,w) if 𝑒 = UPDATE(p, U) and either ¬p𝑥 (𝜎) or𝑈𝑥 (𝜎) ↑
(U𝑥 (𝜎), true) if 𝑒 = UPDATE(p, U), p𝑥 (𝜎) ∧𝑈𝑥 (𝜎) ↑
(𝜎,w) if 𝑒 = INSERT(R) ∧ R(𝑥) ↑
(R(𝑥), true) if 𝑒 = INSERT(R) ∧ R(𝑥) ↓
(⊥, false) if 𝑒 = abort

(39)

The operation specifications of SQL-mvr are an adaptation of those of k-mv:

rspec(𝑟) (𝑥, 𝑐) =
{
{maxrb 𝐸} if 𝑟 = TRANSACTION(body) and 𝑐 = (𝐸, ar, rb)
∅ otherwise

(40)

extract(𝑟) (𝑥, 𝑅) =
{
𝜎 ′ if 𝑟 = TRANSACTION(body), 𝜎 = {(𝑣, false) | (𝑤, 𝑣) ∈ 𝑅}

and 𝜎 ′ = exe𝑥 (body, 𝜎)
(41)

wspec(𝑤) (𝑥, 𝜎) =
{
𝑣 if 𝑟 = TRANSACTION(body), and 𝜎 = (𝑣, true)
undefined otherwise

(42)

The SQL-mvr operation specification is maximally layered w.r.t. rb+, with 1 as its layer bound.

SQL-mvr allows execution-correctors: let CMod be a consistency model, 𝜉 be an abstract execution,

𝐷 be a domain,𝑊 ⊆ 𝐷 be a set of objects and 𝑥 be an object s.t. 𝑥 ∈𝑊 if𝑊 ≠ ∅.
We define 𝑒 = TRANSACTION(SELECT(p𝐷); INSERT(R𝑊)), where p𝑊 and U𝐷 are defined below.

p𝐷 (𝑑, 𝑟) =
{
true if 𝑑 ∈ 𝐷
undefined otherwise

R𝑊 (𝑑) =
{
_ if 𝑑 ∈ 𝐷
undefined otherwise

where _ indicates some arbitrary unspecified value.

For such event, we define the execution-corrector 𝑎 : 𝐷 \ {𝑥} → Events as the totally-undefined
mapping, i.e. the function that no object 𝑦 ∈ 𝐷 is associated with some event.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:34 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

B Normal Form of a Consistency Model w.r.t. an Operation Specification
In this section, we prove the existence of a consistency model in normal form equivalent to a given

one (Theorem B.1), and we show as well that arbitration-freeness is well-defined (Theorem B.9), i.e.

that either all its normal forms are arbitration-free or none.

For compare consistency models when restricted to an operation specification OpSpec, we
introduce the notion ofOpSpec-equivalence. Two consistency models CMod1, CMod2 areOpSpec-
equivalent, denoted CMod1 ≡OpSpec CMod2, if for every abstract execution of OpSpec, 𝜉 , 𝜉 is

valid w.r.t. (CMod1,OpSpec) iff 𝜉 is valid w.r.t. (CMod2,OpSpec). In particular, if CMod1 and
CMod2 are equivalent, they are alsoOpSpec-equivalent. The converse is not true: vacuous visibility
formulas under an operation specificationOpSpecmay not be vacuous for every possible operation

specification.

B.1 Existence of a Normal Form of a Consistency Model
Theorem B.1 states the existence of a normal form of a consistency model w.r.t. OpSpec.

Theorem B.1. Let OpSpec be an operation specification. For every consistency model CMod, there
exists a consistency model that is in normal form w.r.t. OpSpec and that is OpSpec-equivalent to
CMod.

The proof of such result is divided in three parts, proving the existence of a consistency model

with only simple visibility formulas (Lemma B.4), proving that such model can be refined for

removing vacuous visibility formulas (Lemma B.7) and finally, showing that conflict-maximality

can be assumed without loss of generality (Lemma B.8).

Monotonicity
Maximally-layered operation specifications are monotonic. Intuitively, an operation specification

ismonotonic if (1) the values that are not read under a consistency model CMod1 should be also not
read under a stronger model CMod2, and (2) whenever some values are read under a consistency

model CMod1 but not under a stronger one CMod2, some other values must be read under CMod2
which were not visible under CMod1.

Definition B.2. Let OpSpec = (𝐸, rspec, extract,wspec) be an operation specification. OpSpec is
called monotonic if for every pair of consistency models CMod1,CMod2, CMod1 ≼ CMod2, abstract
execution 𝜉 , event 𝑟 ∈ 𝜉 , and object 𝑥 the following hold:
(1) rspec(𝑟) (𝑥, [𝜉,CMod2]) ⊆ rspec(𝑟) (𝑥, [𝜉,CMod1]) ∪ (ctxt𝑥 (𝑟, [𝜉,CMod2]) \

ctxt𝑥 (𝑟, [𝜉,CMod1])).
(2) if rspec(𝑟) (𝑥, [𝜉,CMod1]) \ rspec(𝑟) (𝑥, [𝜉,CMod2]) ≠ ∅, then rspec(𝑟) (𝑥, [𝜉,CMod2]) \

ctxt𝑥 (𝑟, [𝜉,CMod1]) ≠ ∅

Lemma B.3. A maximally-layered operation specification is monotonic.

Proof. Let OpSpec be a maximally-layered operation specification, CMod1,CMod2 be two

consistency models s.t. CMod1 ≼ CMod2, 𝜉 be an abstract execution, 𝑟 be an event in 𝜉 and 𝑥 be an

object. Observe that by the unconditional read property of OpSpec (Property 2 of Definition 7.4),

we can assume w.l.o.g. that 𝑟 is a read event.

On one hand, we observe that if the layer bound of OpSpec is ∞, OpSpec is trivially mono-

tonic: as 𝑟 is a read event and the layer bound of OpSpec is ∞, rspec(𝑟) (𝑥, [𝜉,CMod2]) =

ctxt𝑥 (𝑟, [𝜉,CMod2]) and rspec(𝑟) (𝑥, [𝜉,CMod1]) = ctxt𝑥 (𝑟, [𝜉,CMod1]). Using the fact that

ctxt𝑥 (𝑟, [𝜉,CMod1]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod2]), is easy to see that Properties 1 and 2 hold in this

case.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:35

On the other hand, if the layer bound ofOpSpec, 𝑘 , is finite, let R be the relation for whichOpSpec
is𝑘-maximally layered. For proving Property 1 of Definition B.2, let us partition ctxt𝑥 (𝑟, [𝜉,CMod2])
in the three disjoint sets 𝐶1, 𝐶2 and 𝐶3 described in Equation (43).

𝐶1 B rspec(𝑟) (𝑥, [𝜉,CMod1])
𝐶2 B ctxt𝑥 (𝑟, [𝜉,CMod1]) \ rspec(𝑟) (𝑥, [𝜉,CMod1])
𝐶3 B ctxt𝑥 (𝑟, [𝜉,CMod2]) \ ctxt𝑥 (𝑟, [𝜉,CMod1])

(43)

We note that by Property 1 of Definition 7.4, rspec(𝑟) (𝑥, [𝜉,CMod1]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod1]). As
CMod1 ≼ CMod2, we deduce that rspec(𝑟) (𝑥, [𝜉,CMod1]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod2]); so {𝐶1,𝐶2,𝐶3}
is indeed a partition of ctxt𝑥 (𝑟, [𝜉,CMod2]). Observe that showing Property 1 of Definition B.2

is equivalent to show that rspec(𝑟) (𝑥, [𝜉,CMod2]) ⊆ 𝐶1 ∪ 𝐶3. By Property 1 of Definition 7.4,

rspec(𝑟) (𝑥, [𝜉,CMod2]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod2]) = 𝐶1∪𝐶2∪𝐶3. We conclude the result by showing

that 𝐶2 ∩ rspec(𝑟) (𝑥, [𝜉,CMod2]) = ∅.
For showing it, we observe that the layer of an event𝑤 in ctxt𝑥 (𝑟, [𝜉,CMod1]) is less or equal than

the layer of𝑤 in ctxt𝑥 (𝑟, [𝜉,CMod2]): as ctxt𝑥 (𝑟, [𝜉,CMod1]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod2]), every chain

of events in ctxt𝑥 (𝑟, [𝜉,CMod1]) containing𝑤 and ordered w.r.t. R belongs to ctxt𝑥 (𝑟, [𝜉,CMod2]).
Thus, asOpSpec is maximally layered, an event𝑤 in𝐶2 does not belong to rspec(𝑟) (𝑥, [𝜉,CMod2]):
if 𝑤 ∈ 𝐶2, its layer in ctxt𝑥 (𝑟, [𝜉,CMod1]) is greater than 𝑘 ; so it is also greater than 𝑘 in

ctxt𝑥 (𝑟, [𝜉,CMod2]). Hence, as OpSpec has 𝑘 as layer bound,𝑤 ∉ rspec(𝑟) (𝑥, [𝜉,CMod2]).
For proving Property 2, we observe that if there exists an event𝑤 ∈ rspec(𝑟) (𝑥, [𝜉,CMod1]) \

rspec(𝑟) (𝑥, [𝜉,CMod2]), then the layer of 𝑤 in ctxt𝑥 (𝑟, [𝜉,CMod2]) is greater than 𝑘 . Let 𝑘 ′ be
the layer of 𝑤 and let {𝑒𝑖 }𝑘

′
𝑖=1 be a chain of R of length 𝑘 ′ s.t. 𝑒𝑘 ′ = 𝑤 . As the layer of 𝑤 in

ctxt𝑥 (𝑟, [𝜉,CMod1]) is 𝑘 and R is a partial order, there exists an event 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑘 s.t. 𝑒𝑖 ∈ 𝐶3. We

observe that as the layer of𝑤 is 𝑘 , the layer of event 𝑒𝑖 is 𝑖 . Hence, as rspec is 𝑘-maximally layered,

we conclude that 𝑒𝑖 ∈ rspec(𝑟) (𝑥, [𝜉,CMod2]) \ ctxt𝑥 (𝑟, [𝜉,CMod1]). □

Lemma 7.11 shows that for maximally-layered operation specifications, ensuring a strong consis-

tency criteria is enough for ensuring a weaker one. The proof relies on the fact that maximally-

layered operation specifications are monotonic (Lemma B.3).

Lemma 7.11. Let OpSpec be a maximall-layered operation specification and let CMod1,CMod2 be
a pair of consistency models such that CMod2 is stronger than CMod1. Any abstract execution valid
w.r.t. (CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Proof. Let ℎ = (𝐸, so,wr) be a history and let CMod1 and CMod2 be two consistency models

s.t. CMod1 ≼ CMod2. Let also 𝜉 = (ℎ, rb, ar) be an abstract execution that witness the validity of

ℎ w.r.t. (CMod2,OpSpec). To prove that 𝜉 also witnesses ℎ’s validity w.r.t. (CMod1,OpSpec),
by Definition 7.8, it suffices to prove that for every event 𝑟 ∈ ℎ and object 𝑥 , wr−1𝑥 (𝑟) =

rspec(𝑟) (𝑥, [𝜉,CMod1]).
• wr−1𝑥 (𝑟) ⊆ rspec(𝑟) (𝑥, [𝜉,CMod1]): Let 𝑤 be a write event in wr−1𝑥 (𝑟). As (𝑤, 𝑟) ∈ wr𝑥 ,
𝑤 ∈ ctxt𝑥 (𝑟, [𝜉,CMod1]). Moreover, as 𝜉 witnesses ℎ’s validity w.r.t. CMod2, wr−1𝑥 (𝑟) =

rspec(𝑟) (𝑥, [𝜉,CMod2]). Hence, as 𝑤 ∈ rspec(𝑟) (𝑥, [𝜉,CMod2]) ∩ ctxt𝑥 (𝑟, [𝜉,CMod1]), by
Property 1 of Definition B.2,𝑤 ∈ rspec(𝑟) (𝑥, [𝜉,CMod1]).

• wr−1𝑥 (𝑟) ⊇ rspec(𝑟) (𝑥, [𝜉,CMod1]): Let 𝑤 ∈ rspec(𝑟) (𝑥, [𝜉,CMod1]) s.t.

𝑤 ∉ rspec(𝑟) (𝑥, [𝜉,CMod2]). By property 2 from Definition B.2, there ex-

ists 𝑤 ′ ∈ rspec(𝑟) (𝑥, [𝜉,CMod2]) s.t. 𝑤 ′ ∉ ctxt𝑥 (𝑟, [𝜉,CMod1]). However, as

rspec(𝑟) (𝑥, [𝜉,CMod2]) = wr−1𝑥 (𝑟) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod1]), this is impossible. There-

fore, rspec(𝑟) (𝑥, [𝜉,CMod1]) ⊆ rspec(𝑟) (𝑥, [𝜉,CMod2]) = wr−1𝑥 (𝑟). □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:36 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

An immediate consequence of Lemma 7.11 is the following result.

Lemma 6.5. Let OpSpec be a basic operation specification, and let CMod1,CMod2 be a pair of
basic consistency models s.t. CMod2 is weaker than CMod1. Any abstract execution valid w.r.t.
(CMod2,OpSpec) is also valid w.r.t. (CMod1,OpSpec).

Simple Form
For proving Theorem B.1, we first prove the existence of a consistency model in simple form (i.e.

a consistency model with all its visibility formulas are simple) that is equivalent to CMod.

Lemma B.4. For any consistency model CMod, there exists a consistency model in simple form that
is equivalent to CMod.

Intuitively, the proof of Lemma B.4 is as follows: we first unfold union and transitive closure

operators, and then trim id and compositional operators to obtain a consistency model in simple

form. As an intermediate step, we define the consistency model obtained after unfolding union

and transitive closure operators. Such consistency model is the almost simple form of CMod,
almost(CMod), and it is described as the union of the almost simple form of each of its visibility

formulas, i.e. almost(CMod) = ⋃
𝑣∈CMod almost(𝑣). A visibility formula 𝑎 belongs to the almost

simple form of a visibility formula 𝑣 , 𝑎 ∈ almost(𝑣) if (1) len(𝑣) = len(𝑎) and (2) for every

𝑖, 1 ≤ 𝑖 ≤ len(𝑣), Rel𝑎𝑖 ∈ 𝜎 (Relv𝑖); where 𝜎 (Rel𝑖𝑣) is the set of relations described as follows:

𝜎 (R) =


{R} if R = id, so,wr, rb or ar
𝜎 (S) ∪ 𝜎 (T) if R = S ∪ T
𝜎 (S);𝜎 (T) if R = S; T⋃

𝑘∈N∧𝑘≥1 𝜎 (S)𝑘 if R = S+
(44)

where the composition of two sets of relations 𝐴, 𝐵 is defined as 𝐴;𝐵 F {𝑎;𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵}.
We prove that CMod and almost(CMod) are equivalent.

Proposition B.5. For any consistency model CMod, CMod and almost(CMod) are equivalent.

Proof. For proving the result, we show that for any abstract execution 𝜉 , object 𝑥 and event 𝑟 ,

ctxt𝑥 (𝑟, [𝜉,CMod]) = ctxt𝑥 (𝑟, [𝜉, almost(CMod)]). In particular, it suffices to prove that for every

visibility formula 𝑣 ∈ CMod and event 𝑤 , 𝑣𝑥 (𝑤, 𝑟) holds in 𝜉 iff there exists a visibility formula

𝑎 ∈ almost(𝑣) s.t. 𝑎𝑥 (𝑤, 𝑟) holds in 𝜉 . Observe that for every 𝑎 ∈ almost(𝑣), len(𝑣) = len(𝑎); so we

reduce the proof to show that for every pair of events 𝑒, 𝑒′, (𝑒, 𝑒′) ∈ Relv𝑖 iff there exists R′ ∈ 𝜎 (Relv𝑖)
s.t. (𝑒, 𝑒′) ∈ R′

.

In the following, we prove that for every relation R over pair of events obtained by the grammar

described in Equation (3), the following holds: (𝑒, 𝑒′) ∈ R iff there exists R′ ∈ 𝜎 (𝑅) s.t. (𝑒, 𝑒′) ∈ R′
.

We show the result by induction on the depth of R6
. The base case, when the depth of R is 0, refers

to the case R = id, so,wr, rb, ar. In such case, the result immediately holds by the definition of 𝜎 (R).
Let us assume that for any relation of depth at most 𝑛 the result holds, and let us prove that for

relations of depth 𝑛 + 1. Three alternatives arise:

• If R = S ∪ T, (𝑒, 𝑒′) ∈ R if and only if (𝑒, 𝑒′) ∈ S ∪ T. By induction hypothesis on both S and

T, (𝑒, 𝑒′) ∈ S ∪ T iff there exists R′ ∈ 𝜎 (S) ∪ 𝜎 (T) s.t. (𝑒, 𝑒′) ∈ R′
. Finally, by Equation (44),

we conclude that there exists R′ ∈ 𝜎 (S) ∪ 𝜎 (T) s.t. (𝑒, 𝑒′) ∈ R′
if and only if there exists

R′ ∈ 𝜎 (R) s.t. (𝑒, 𝑒′) ∈ R′
.

• If R = S; T, (𝑒, 𝑒′) ∈ R if and only if (𝑒, 𝑒′) ∈ S; T. By the definition of composition, (𝑒, 𝑒′) ∈ S; T
iff there exists 𝑒′′ s.t. (𝑒, 𝑒′′) ∈ S and (𝑒′′, 𝑒′) ∈ T. By induction hypothesis on both S

6
By depth of R we mean the depth of the tree obtained by deriving R using Equation (3).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:37

and T, there exists 𝑒′′ s.t. (𝑒, 𝑒′′) ∈ S and (𝑒′′, 𝑒′) ∈ T iff there exists 𝑒′′ and relations

S′ ∈ 𝜎 (S), T′ ∈ 𝜎 (T) 𝑒′′ s.t. (𝑒, 𝑒′′) ∈ S′ and (𝑒′′, 𝑒′) ∈ T′. By the definition of 𝜎 (𝑆);𝜎 (𝑇),
we observe that there exists 𝑒′′ and relations S′ ∈ 𝜎 (S), T′ ∈ 𝜎 (T) 𝑒′′ s.t. (𝑒, 𝑒′′) ∈ S′ and
(𝑒′′, 𝑒′) ∈ T′ iff there exists relation R′ ∈ 𝜎 (S; T) s.t. (𝑒, 𝑒′) ∈ R′

. Finally, by Equation (44),

we conclude that there exists relation R′ ∈ 𝜎 (S; T) s.t. (𝑒, 𝑒′) ∈ R′
if and only if there exists

R′ ∈ 𝜎 (R) s.t. (𝑒, 𝑒′) ∈ R′
.

• If R = S+, (𝑒, 𝑒′) ∈ R if and only if there exists 𝑘 ∈ N+
s.t. (𝑒, 𝑒′) ∈ S𝑘 . By the previous point,

there exists 𝑘 ∈ N+
s.t. (𝑒, 𝑒′) ∈ S𝑘 if and only if there exists 𝑘 ∈ N+

and relation S′ ∈ 𝜎 (S)𝑘
s.t. (𝑒, 𝑒′) ∈ S′. Finally, by Equation (44), we conclude that there exists 𝑘 ∈ N+

and relation

S′ ∈ 𝜎 (S)𝑘 s.t. (𝑒, 𝑒′) ∈ 𝜎 (S)𝑘 if and only if there exists relation R′ ∈ 𝜎 (R) s.t. (𝑒, 𝑒′) ∈ R′
.

□

Obtaining a consistency model in simple form from a consistency model in almost simple form

is straightforward: every visibility formula is transformed by splitting composed relations into

simpler subrelations and omitting id by merging two existentially quantified events. Lemma B.4

formally describes such procedure.

Lemma B.4. For any consistency model CMod, there exists a consistency model in simple form that
is equivalent to CMod.

Proof. We construct a consistency model, simple(CMod), that is in simple form and it is equiv-

alent to CMod. The model is formally defined as follows:

simple(CMod) = {simple(𝑎) | 𝑎 ∈ almost(CMod)} (45)

where simple(𝑎) is the simple visibility formula of 𝑎.
The simple visibility formula of a visibility formula in almost form 𝑎 is the visibility formula 𝑓

obtained by supressing id and compositional operators. Formally, 𝑓 is the visibility formula s.t. (1)

len(𝑓) = ∑len(𝑎)
𝑖=1

count(Rel𝑎𝑖) and (2) for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑓), Rel𝑓
𝑖
= rel(Rel𝑎𝑗 , 𝑖 − 𝑘 𝑗); where 𝑗

is the maximum index s.t. 𝑘 𝑗 < 𝑖 and 𝑘 𝑗 =
∑𝑗

𝑙=1
count(Rel𝑎

𝑙
), and count and rel are the functions

described in Equation (46) and Equation (47) respectively.

The function count counts the number of additional quantifiers the correspondant simple form

requires:

count(R) =


0 if R = id
1 if R = so,wr, rb or ar
count(S) + count(T) if R = S; T

(46)

Also, the function rel, given a relation using compositional operator and an index 𝑖 , returns the

𝑖-th component:

rel(R, 𝑖) =


R if R = so,wr, rb or ar
rel(S, 𝑖) if 𝑖 ≤ count(S)
rel(T, 𝑖 − count(S)) otherwise

(47)

By construction, simple(CMod) is in simple form. Clearly, simple(CMod) is equivalent to

almost(CMod). Then, thanks to Proposition B.5, we conclude that simple(CMod) is equivalent to
CMod. □

Removing Vacuous Visibility Formulas
After proving the existence of a consistency model CMod in simple form equivalent to a given

one, we show how to transform it for obtaining an equivalent consistency model CMod without

vacuous visibility formulas (Lemma B.7). We say that any such consistency model is in basic normal

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:38 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

form, extending Definition 6.1 to any consistency model whose visibility formulas are described

using Equation (7).

The following result, key to prove Lemma B.7, it is a simple consequence of Definition B.2 and

Lemma B.3.

PropositionB.6. LetOpSpec be amaximally-layered operation specification, and letCMod1,CMod2
be two consistency models s.t. CMod1 .OpSpec CMod2 but CMod1 ≼ CMod2. There exists an ab-
stract execution 𝜉 valid w.r.t. CMod1, an object 𝑥 and events𝑤, 𝑟 s.t.𝑤 ∈ rspec(𝑟) (𝑥, [𝜉,CMod2]) \
ctxt𝑥 (𝑟, [𝜉,CMod1]).

Proof. First of all, as CMod1 .OpSpec CMod2 but CMod1 ≼ CMod2, by Lemma 7.11, there exists

an abstract execution 𝜉 valid w.r.t. CMod1, an object 𝑥 and an event 𝑟 s.t. rspec(𝑟) (𝑥, [𝜉,CMod2]) ≠
rspec(𝑟) (𝑥, [𝜉,CMod1]). Thus, either rspec(𝑟) (𝑥, [𝜉,CMod2]) \ rspec(𝑟) (𝑥, [𝜉,CMod1]) ≠ ∅ or

rspec(𝑟) (𝑥, [𝜉,CMod1]) \ rspec(𝑟) (𝑥, [𝜉,CMod2]) ≠ ∅.
On one hand, if rspec(𝑟) (𝑥, [𝜉,CMod2]) \ rspec(𝑟) (𝑥, [𝜉,CMod1]) ≠ ∅, by Property 1 of

Definition B.2, then rspec(𝑟) (𝑥, [𝜉,CMod2]) \ ctxt𝑥 (𝑟, [𝜉,CMod1]) ≠ ∅. On the other hand,

if rspec(𝑟) (𝑥, [𝜉,CMod1]) \ rspec(𝑟) (𝑥, [𝜉,CMod2]) ≠ ∅, by Property 2 of Definition B.2,

rspec(𝑟) (𝑥, [𝜉,CMod2]) \ ctxt𝑥 (𝑟, [𝜉,CMod1]) ≠ ∅. □

Lemma B.7. Let OpSpec be an operation specification. For every consistency model CMod in simple
form, there exists a OpSpec-equivalent consistency model, bnCModOpSpec, that is in basic normal
form w.r.t. OpSpec.

Proof. To prove the result, we construct a consistency model in basic normal form w.r.t.OpSpec,
bnCModOpSpec, that is OpSpec-equivalent to CMod. Without loss of generality we can assume that

CMod is ordered. Let 𝛼 be an ordinal of cardinality |CMod|. We denote by 𝑣𝑖 , 0 ≤ 𝑖 < 𝛼 to the 𝑖-th

visibility formula in CMod7.
We construct a sequence of nested consistency models CMod𝑘 , 0 ≤ 𝑘 ≤ 𝛼 s.t. (1) CMod𝑘

is OpSpec-equivalent to CMod, (2) CMod𝑘 is more succinct than CMod𝑖 (i.e., for every 𝑖 < 𝑘 ,

𝑣𝑖 ∈ CMod𝑘 iff 𝑣𝑖 ∈ CMod𝑖 and for every 𝑖 > 𝑘 , 𝑣𝑖 ∈ CMod𝑘), and (3) the first 𝑘 visibility formulas

of CMod𝑘 are simple and non-vacuous w.r.t. (CMod𝑘 ,OpSpec) (i.e., for every 𝑖, 0 ≤ 𝑖 < 𝑘 , if

𝑣𝑖 ∈ CMod𝑘 , then CMod𝑘 \ {𝑣𝑖 } .OpSpec CMod).
We construct such sequence using transfinite induction. The base case, 𝑘 = 0, corresponds to

CMod0 = CMod, which trivially satisfies (1), (2) and (3). For the successor case, let us assume

that the property holds for the consistency model CMod𝑘 , and let us prove it for CMod𝑘+1. If
CMod𝑘 \ {𝑣𝑘 } ≡OpSpec CMod, we denote CMod𝑘+1 as CMod𝑘 \ {𝑣𝑘 }; and otherwise, CMod𝑘+1 =
CMod𝑘 .
Clearly, by construction of CMod𝑘+1, (1) and (2) immediately hold. For proving (3), we ob-

serve that if 𝑣𝑖 ∈ CMod𝑘+1, 𝑣𝑖 ∈ CMod𝑖 . In such case, CMod𝑖 \ {𝑣𝑖 } .OpSpec CMod. Hence, by
Lemma 7.11, there exists an abstract execution valid w.r.t. (CMod𝑖 \ {𝑣𝑖 },OpSpec) that is not
valid w.r.t. (CMod,OpSpec). As CMod𝑘+1 ⊆ CMod𝑖 , CMod𝑘+1 \ {𝑣𝑖 } ⊆ CMod𝑖 \ {𝑣𝑖 } and hence,

CMod𝑘+1\{𝑣𝑖 } ≼ CMod𝑖 \{𝑣𝑖 }. Therefore, by Lemma 7.11, 𝜉 is valid w.r.t. (CMod𝑘+1\{𝑣𝑖 },OpSpec).
Thus, as 𝜉 is not valid w.r.t. (CMod,OpSpec), CMod𝑘+1 \ {𝑣𝑖 } .OpSpec CMod; so we conclude (3).

For the limit case, we define CMod𝑘 as the intersection of all consistency models CMod𝑖 , 𝑖 < 𝑘 .
We observe that in this case, (2) immediately holds by construction of CMod𝑘 .

For proving (3) we observe that 𝑣𝑖 ∈ CMod𝑘 iff 𝑣𝑖 ∈ CMod𝑖 . In such case, CMod𝑖 \ {𝑣𝑖 } .OpSpec
CMod; so by Lemma 7.11, there exists an abstract execution 𝜉 valid w.r.t. (CMod𝑖\{𝑣𝑖 },OpSpec) that

7
Without loss of generality, we can assume that limit ordinals in 𝛼 are not associated to a visibility formula.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:39

is not valid w.r.t. (CMod,OpSpec). Similarly to the inductive case, we deduce using Lemma 7.11 that

𝜉 is valid w.r.t. (CMod𝑘 \ {𝑣𝑖 },OpSpec). Therefore, we conclude that CMod𝑖 \ {𝑣𝑖 } .OpSpec CMod.
For proving (1), we reason by contradiction, assuming that CMod𝑘 .OpSpec CMod and reaching

a contradiction. In such case, by Lemma 7.11 there exists an abstract execution 𝜉 = (ℎ, rb, ar) valid
w.r.t. (CMod𝑘 ,OpSpec) that is not valid w.r.t. (CMod,OpSpec). W.l.o.g., we can assume that 𝜉 is

minimal w.r.t. the number of events in it; and let len(𝜉) the number of events in such execution.

For each event 𝑟 ∈ 𝜉 , we define an ordinal 𝑖 (𝑟), 𝑖 (𝑟) < 𝑘 associated to every visibility formula

𝑣𝑖 , 𝑖 < 𝑘 that can be applied on 𝜉 . First, we note that for every pair of events, 𝑒, 𝑒′ and object 𝑥 , if a

visibility formula 𝑣𝑥 (𝑒, 𝑒′) holds in 𝜉 , len(𝑣) ≤ len(𝜉). Observe that there exists finite number of

visibility formulas 𝑣 in CMod with at most length len(𝜉): on one hand, for each 𝑗, 1 ≤ 𝑗 ≤ len(𝑣),
Rel𝑣𝑗 is either so,wr, rb or ar. On the other hand, wrCons is defined as a conjunction of predicates

from a finite set. Thus, the number of possible visibility formulas 𝑣 of length len(𝑣) ≤ len(𝜉) is
finite. Let 𝑖𝑟 be the biggest index of a visibility formula 𝑣𝑖 ∈ CMod s.t. len(𝑣𝑖) ≤ len(𝜉) and 𝑖 < 𝑘 ;
and let 𝑖 (𝑟) = 𝑖𝑟 + 1. Observe that 𝑘 is a limit ordinal, 𝑖 (𝑟) < 𝑘 .
Let 𝑥 be an object and 𝑟 be an event in 𝜉 . We show that ctxt𝑥 (𝑟, [𝜉,CMod𝑘]) =

ctxt𝑥 (𝑟, [𝜉,CMod𝑖 (𝑟)]). As CMod𝑘 ⊆ CMod𝑖 (𝑟) , ctxt𝑥 (𝑟, [𝜉,CMod𝑘]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod𝑖 (𝑟)]).
For showing ctxt𝑥 (𝑟, [𝜉,CMod𝑖 (𝑟)]) ⊆ ctxt𝑥 (𝑟, [𝜉,CMod𝑘]), let 𝑤 ∈ ctxt𝑥 (𝑟, [𝜉,CMod𝑖 (𝑟)]). In
such case, there exists a visibility formula 𝑣𝑖 s.t. 𝑣𝑖 (𝑤, 𝑟) holds in 𝜉 . If 𝑖 > 𝑘 , by (2) 𝑣𝑖 ∈ CMod𝑘 .
Otherwise, 𝑖 < 𝑖 (𝑟), so by (2), 𝑣𝑖 ∈ CMod𝑖 . Observe that in this case, applying the induction hypoth-

esis (2) on every consistency model CMod𝑗 , 𝑗 < 𝑘 , 𝑣𝑖 ∈ CMod𝑗 , we deduce that 𝑣𝑖 ∈ CMod𝑘 .
Either way, we deduce that 𝑤 ∈ ctxt𝑥 (𝑟, [𝜉,CMod𝑘]). In conclusion, ctxt𝑥 (𝑟, [𝜉,CMod𝑘]) =

ctxt𝑥 (𝑟, [𝜉,CMod𝑖 (𝑟)]).
We conclude a contradiction by showing that 𝜉 is valid w.r.t. (CMod,OpSpec); which by assump-

tion it is not. Let 𝑒 be the last event w.r.t. ar in 𝜉 . For reaching such contradiction, as 𝑖 (𝑒) < 𝑘 and

CMod𝑖 (𝑒) ≡OpSpec CMod, it suffices to show that 𝜉 is valid w.r.t. (CMod𝑖 (𝑒) ,OpSpec). We show

that wr−1𝑥 (𝑒′) = rspec(𝑒′) (𝑥, [𝜉,CMod𝑖 (𝑒)]).
On one hand, if 𝑒′ = 𝑒 , we note that ctxt𝑥 (𝑒, [𝜉,CMod𝑘]) = ctxt𝑥 (𝑒, [𝜉,CMod𝑖 (𝑒)]). As 𝜉 is valid

w.r.t. (CMod𝑘 ,OpSpec), we conclude that rspec(𝑒) (𝑥, [𝜉,CMod𝑖 (𝑒)]) = wr−1𝑥 (𝑒).
On the other hand, if 𝑒′ ≠ 𝑒 , let 𝜉 ′ be the execution obtained by removing 𝑒 from

𝜉 . By the minimality of 𝜉 , 𝜉 ′ is valid w.r.t. (CMod,OpSpec). By induction hypothesis (1),

CMod ≡OpSpec CMod𝑖 (𝑒) . Hence, 𝜉 ′ is valid w.r.t. (CMod𝑖 (𝑒) ,OpSpec). We thus deduce that

wr−1𝑥 (𝑒′) = rspec(𝑒′) (𝑥, [𝜉,CMod𝑖 (𝑒)]). In conclusion, CMod𝑘 satisfies (1) and thus, the induc-

tive step.

Finally, we define bnCModOpSpec = CMod𝛼 . As CMod𝛼 satisfies (1) and (3), it is a consistency

model OpSpec-equivalent to CMod composed of finite, non-vacuous w.r.t. (CMod𝛼 ,OpSpec) visi-
bility formulas; so we conclude that it is a consistency model in basic normal form.

□

Conflict-Strengthening a Consistency Model

Lemma B.8. Let OpSpec be an operation specification. For every consistency model CMod in basic
normal form w.r.t. OpSpec there exists a OpSpec-equivalent consistency model that is in normal form.

Proof. We transform CMod to define nCModOpSpec, a consistency model in normal form that

is OpSpec-equivalent to CMod.
For every visibility formula 𝑣 ∈ CMod, we define 𝑣 ′ as the visibility formula that only differs with

𝑣 on its conflict predicate. More specifically, we require that for every set 𝐸 ∈ P(𝜀0, . . . 𝜀len(𝑣)), we re-
quire that conflict (𝐸) ∈ 𝑣 ′ (resp. conflict𝑥 (𝐸) ∈ 𝑣 ′) iff (1) for every abstract execution 𝜉 , every object

𝑥 and every collection of events 𝑒0, . . . 𝑒len(𝑣) s.t. 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in 𝜉𝑣 , there exists an object

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:40 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

𝑦 ≠ 𝑥 s.t. if 𝜀𝑖 ∈ 𝐸, 0 ≤ 𝑖 ≤ len(𝑣), thenwspec(𝑒𝑖) (𝑦, [𝜉,CMod]) ↓ (resp.wspec(𝑒𝑖) (𝑥, [𝜉,CMod]) ↓)
and (2) there is no strict superset of 𝐸 satisfying (1). We define nCModOpSpec as the set containing
all such visibility formulas. For conclude the result, we first prove that nCModOpSpec ≡OpSpec CMod
for then deduce that nCModOpSpec is indeed a consistency model in normal form.

We show that nCModOpSpec ≡OpSpec CMod. On one hand, as every visibility formula 𝑣 ′ enforces
more conflicts than 𝑣 , nCModOpSpec ≼ CMod. On the other hand, by the definition of 𝑣 ′, for
every abstract execution 𝜉 , object 𝑥 and events𝑤, 𝑟 , if 𝑣 ′𝑥 (𝑤, 𝑟) holds in 𝜉 , 𝑣𝑥 (𝑤, 𝑟) also holds in 𝜉 .

Altogether, we conclude that nCModOpSpec ≡OpSpec CMod.
To show that nCModOpSpec is a consistency model in normal form, we observe that by construc-

tion, every visibility formula 𝑣 ∈ nCModOpSpec is in simple form and it is conflict-maximal w.r.t.

OpSpec. Hence, it suffices to prove that every visibility formula 𝑣 ∈ nCModOpSpec is non-vacuous
w.r.t. nCModOpSpec.

Let 𝑣 ′ be a visibility formula of nCModOpSpec. Observe that by construction of nCModOpSpec,
nCModOpSpec \ {𝑣 ′} ≡ CMod \ {𝑣}. Hence, as CMod \ {𝑣} .OpSpec CMod, we deduce that

nCModOpSpec \ {𝑣 ′} ≡ CMod \ {𝑣} .OpSpec CMod ≡ nCModOpSpec. In other words, 𝑣 ′ is non-
vacuous w.r.t. (nCModOpSpec,OpSpec).

□

B.2 Arbitration-Free Well-Formedness
As described in Section 7.1, a consistency model is arbitration-free if a OpSpec-equivalent consis-
tency model in normal form is arbitration-free. In Theorem B.9, we present a result that states that

arbitration-free is well-defined, as either every OpSpec-equivalent consistency model in normal

form are arbitration-free or none.

Regarding notations, for a visibility formula 𝑣 and 𝑖, 0 ≤ 𝑖 ≤ len(𝑣) we denote hereinafter

conflictsOf (v, i) ∈ P(P(𝜀0, . . . 𝜀len(𝑣))) to the sets of conflicts of 𝜀𝑖 in 𝑣 , i.e. 𝐸 ∈ conflictsOf (v, i) iff
𝜀𝑖 ∈ 𝐸 and conflict (𝐸) ∈ 𝑣 .

Theorem B.9. LetOpSpec = (𝐸, rspec, extract,wspec) be an operation specification and let CMod
be a consistency model. For every pair of consistency models in normal form 𝑛1, 𝑛2 that are OpSpec-
equivalent to CMod, 𝑛1 is arbitration-free iff 𝑛2 is arbitration-free.

Proof. We prove the result by contradiction, assuming that there exists two consistency models

𝑛1, 𝑛2 in normal form, OpSpec-equivalent to CMod, but one of them arbitration-free and the other

one no. W.l.o.g., we can assume that 𝑛1 is arbitration-free and 𝑛2 is not. On one hand, as 𝑛2 is not

arbitration-free w.r.t. OpSpec, there exists a visibility formula 𝑣 ∈ 𝑛2 s.t. 𝑣 is not arbitration-free.
We construct an abstract execution that is valid w.r.t. (𝑛1,OpSpec) but not valid w.r.t. (𝑛2,OpSpec)
using 𝑣 , reaching a contradiction.

First of all, observe that by Lemma 6.4, 𝑛1 is weaker than CC. The abstract execution we construct

contains a collection events 𝑒0, . . . 𝑒len(𝑣)s.t. 𝜉 is valid w.r.t. (CC,OpSpec) and 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds
on it; for some object 𝑥 .

Let 𝑥 be an object. For each set 𝐸 ∈ P(𝜀0, . . . 𝑒len(𝑣)) we consider a distinct object 𝑦𝐸 , also distinct
from 𝑥 . These objects represents each different conflict in 𝑣 in an explicit manner.

We denote by 𝐸𝑥 ∈ P(𝜀0, . . . 𝑒len(𝑣)) to the set s.t. conflict𝑥 (𝐸𝑥) ∈ 𝑣 . Also, for every 𝑖, 0 ≤ 𝑖 ≤
len(𝑣), we denote by 𝑋𝑖 to the set containing objects 𝑦𝐸 (resp. 𝑥) iff 𝐸 ∈ conflictsOf (v, i) (resp.
𝐸𝑥 ∈ conflictsOf (v, i)). We denote by 𝑋 to the union of sets 𝑋𝑖 , 0 ≤ 𝑖 ≤ len(𝑣).
For obtaining 𝜉 , we construct a sequence of executions 𝜉𝑖 , 0 ≤ 𝑖 ≤ len(𝑣) inductively, starting

from an initial event init, and incorporating at each time a new event 𝑒𝑖 . We use the notation

ℎ−1 and 𝜉−1 to describe the history and abstract execution containing only init respectively. We

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:41

use the convention 𝑒−1 = init, conflictsOf (v,−1) = Objs and 𝑥−1 = 𝑜−1 = 𝑥 (the usage of such

conventions will be clearer later).

For the inductive step, we assume that the abstract execution 𝜉𝑖−1 = (ℎ𝑖−1, rb𝑖−1, ar−1) associated
to the history ℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) contains events 𝑒−1 . . . 𝑒𝑖−1 and is well-defined (satisfies

Definition 3.4) and we construct the history ℎ𝑖 and the abstract execution 𝜉𝑖 . First of all, we impose

the constraint that if 𝑖 > 0, then 𝑟𝑖 = 𝑟𝑖−1 iff Relv𝑖 = so, and otherwise 𝑟𝑖 ≠ 𝑟 𝑗 , 0 ≤ 𝑗 < 𝑖 .

Also, we define a pair of special objects, 𝑥𝑖 and 𝑜𝑖 . The purpose of object 𝑥𝑖 is control the number

of events in 𝜉 that write object 𝑥 . Equation (48) describes 𝑥𝑖 ; where choice is a function that

deterministically chooses an element from a non-empty set. The object 𝑜𝑖 is an object different from

objects 𝑥,𝑦𝐸, 𝐸 ∈ P(𝜀0, . . . 𝜀len(𝑣)) and 𝑜 𝑗 ,−1 ≤ 𝑗 < 𝑖 that we use for ensuring that if Relv𝑖 = wr,
then (𝑒𝑖−1, 𝑒𝑖) ∈ wr.

𝑥𝑖 =


𝑥𝑖−1 if 𝑋𝑖 = ∅
𝑥 if 𝑋𝑖 ≠ ∅ and 𝑥 ∈ 𝑋𝑖

choice (𝑋𝑖) if 𝑋𝑖 ≠ ∅ and 𝑥 ∉ 𝑋𝑖

(48)

We select a domain 𝐷𝑖 , a set of objects𝑊𝑖 ,𝑊𝑖 ⊆ 𝐷𝑖 that event 𝑒𝑖 must write, and a set of objects

𝐶𝑖 ⊆ 𝐷𝑖 whose value needs to be corrected for 𝑒𝑖 in 𝜉𝑖+1 – in the sense of Definition 7.13. We

distinguishing between several cases:

• 𝑖 = 0 or 0 < 𝑖 ≤ len(𝑣) and Relv𝑖 ≠ wr and conflictsOf (v, i) ≠ ∅: In this case, we select 𝑒𝑖 to

be a write event. If OpSpec only allows single-object atomic read-write events, we define

𝐷𝑖 = 𝑋𝑖 ; while if not, we consider a domain containing 𝑜𝑖−1, 𝑜𝑖 , every object in 𝑋𝑖 but no

object from 𝑋 \𝑋𝑖 nor objects 𝑜 𝑗 , 0 ≤ 𝑗 < len(𝑣), 𝑗 ≠ 𝑖 − 1, 𝑖 . Observe that by Proposition B.10,

such domain always exist on OpSpec.
If there is an unconditional write event whose domain is 𝐷𝑖 , we define𝑊𝑖 = 𝐷𝑖 . Otherwise,

we define𝑊𝑖 = 𝑋𝑖 ∪ {𝑜𝑖 }.
• 0 < 𝑖 ≤ len(𝑣), Relv𝑖 = wr and conflictsOf (v, i) ≠ ∅: In this case, by Proposition B.11, OpSpec
allows atomic read-write events. IfOpSpec only allows single-object atomic read-write events,

we define 𝐷𝑖 = 𝑋𝑖 ; while if not, we consider a domain containing 𝑜𝑖−1, 𝑜𝑖 , every object in

𝑋𝑖 but no object from 𝑋 \ 𝑋𝑖 nor objects 𝑜 𝑗 , 0 ≤ 𝑗 < len(𝑣), 𝑗 ≠ 𝑖 − 1, 𝑖 . Observe that by

Proposition B.10, such domain always exist on OpSpec.
Similarly to the previous case, if there is an unconditional atomic read-write event whose

domain is 𝐷𝑖 , we define𝑊𝑖 = 𝐷𝑖 . Otherwise, we define𝑊𝑖 = 𝑋𝑖 ∪ {𝑜𝑖 }.
• 0 < 𝑖 ≤ len(𝑣) and conflictsOf (v, i) = ∅: In this case, by Proposition B.11, OpSpec allows

events that do not unconditionally write. If OpSpec allows read events that are not write

events, we select 𝐷𝑖 to be the domain of any such event and𝑊𝑖 = ∅. Otherwise, OpSpec
must allow conditional write events; so we select 𝐷𝑖 to be the domain of any such event,

𝑊𝑖 = ∅. Observe that in this case, thanks to the assumptions on OpSpec (see Section 7.4), we

can assume without loss of generality that whenever 𝑜𝑖−1 ∈ 𝐷𝑖−1, 𝑜𝑖−1 ∈ 𝐷𝑖 as well; while

otherwise, that 𝑥𝑖−1 ∈ 𝐷𝑖 .

Finally we describe the event 𝑒𝑖 thanks to the sets 𝐷𝑖 and𝑊𝑖 . If𝑊𝑖 = 𝐷𝑖 and Relv𝑖 = wr, we
select an unconditional atomic read-write event whose domain is 𝐷𝑖 . If𝑊𝑖 = 𝐷𝑖 and Relv𝑖 ≠ wr, we
select an unconditional write event whose domain is 𝐷𝑖 . If𝑊𝑖 = ∅ and OpSpec allows read events

that are not write events, we select a read event whose domain is 𝐷𝑖 . Finally, if that is not the

case, we select a conditional write event 𝑒𝑖 s.t. obj(𝑒𝑖) = 𝐷𝑖 and s.t. an execution-corrector exists

for (𝑒𝑖 ,𝑊𝑖 , 𝑥𝑖 , 𝜉
𝑖−1 ⊕ 𝑒𝑖). Such event always exists by the assumptions on operation specifications

(Section 7.4). W.l.o.g. we can assume that 𝑒𝑖 happens on replica 𝑟𝑖 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:42 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

For concluding the description of ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖) and 𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖), we use an auxiliary

history and abstract execution, ℎ𝑖
0
= (𝐸𝑖

0
, so𝑖

0
,wr𝑖

0
) and 𝜉𝑖

0
= (ℎ𝑖

0
, rb𝑖

0
, ar𝑖

0
) respectively. For describing

the write-read dependencies of 𝑒𝑖 in 𝜉
0

𝑖 , we define the context mapping 𝑐𝑖 : Objs → Contexts,
associating each object 𝑦 to the context 𝑐𝑖 (𝑦) described in Equation (49).

𝑐𝑖 (𝑦) = (𝐹 𝑖 (𝑦), rb𝑖−1↾𝐹 𝑖 (𝑦)×𝐹 𝑖 (𝑦) , ar
𝑖−1
↾𝐹 𝑖 (𝑦)×𝐹 𝑖 (𝑦)) (49)

where 𝐹 𝑖 (𝑦) is the mapping associating each object 𝑦 with the set of events described below:

𝐹 𝑖 (𝑦) =


{init} if 𝑖 = 0 or if 0 < 𝑖 ≤ len(𝑣) ∧ Rel𝑖 = ar{
𝑒 ∈ 𝐸𝑖−1

���� wspec(𝑒) (𝑦, [𝜉𝑖−1, CC]) ↓ and

(𝑒, 𝑒𝑖−1) ∈ (rb𝑖−1)∗
}

otherwise

Then, we define 𝜉𝑖
0
as the abstract execution of the history ℎ𝑖

0
= (𝐸𝑖

0
, so𝑖

0
,wr𝑖

0
) obtained by

appending 𝑒𝑖 to ℎ
𝑖
0
and 𝜉𝑖

0
as follows: 𝐸𝑖

0
contains 𝐸𝑖−1 and event 𝑒𝑖 . First of all, we require that

the relations so𝑖
0
, wr𝑖

0
, rb𝑖

0
and ar𝑖

0
contain so𝑖−1, wr𝑖−1, rb𝑖−1 and ar𝑖−1 respectively. With respect

to event 𝑒𝑖 , we impose that 𝑒𝑖 is the maximal event w.r.t. so𝑖
0
among those on the same replica.

Also, 𝑒𝑖 is maximal w.r.t. wr as we define that for every object 𝑧, wr𝑖
0

−1
𝑧
(𝑒𝑖) = rspec(𝑒𝑖) (𝑧, 𝑐𝑖 (𝑧)). For

describing rb𝑖
0
, we require that for every event 𝑒 s.t. (𝑒, 𝑒𝑖) ∈ so𝑖

0
, (𝑒, 𝑒𝑖) ∈ rb𝑖 . Also, if Relv𝑖 = rb,

we impose that (𝑒𝑖−1, 𝑒𝑖) ∈ rb𝑖
0
. Finally, we require that for every pair of events 𝑒, 𝑒′ ∈ 𝐸𝑖−1 s.t.

(𝑒, 𝑒′) ∈ rb𝑖−1 and (𝑒′, 𝑒𝑖) ∈ so𝑖
0
, (𝑒, 𝑒𝑖) ∈ rb𝑖

0
. With respect to ar𝑖

0
, we impose that 𝑒𝑖 is the maximum

event w.r.t. ar in 𝜉𝑖
0
.

We use 𝜉𝑖
0
to construct 𝜉𝑖 . If event 𝑒𝑖 is not a conditional write event, 𝜉𝑖 = 𝜉𝑖

0
. Otherwise, if

event 𝑒𝑖 is a conditional write event, given𝑊𝑖 and object 𝑥𝑖 , we select an execution-corrector for 𝑒𝑖
w.r.t. (CC,OpSpec) and 𝑎𝑖 . W.l.o.g., we assume that every event mapped by 𝑎𝑖 happens on replica

𝑟𝑖 . Observe that by the choice of sets 𝐷𝑖 and𝑊𝑖 , and thanks to the assumptions on storages (see

Section 7.4), such event(s) are always well-defined.

In addition, we denote by 𝐶𝑖 to the set of objects we need to correct for 𝑒𝑖 . More specifically,

if 𝑒𝑖 is a conditional write-read, we denote by 𝐶𝑖 to the set of objects 𝑦 s.t. 𝑎𝑖 (𝑦) is defined, i.e.
𝐶𝑖 = {𝑦 ∈ Objs | 𝑎𝑖 (𝑦) ↓}. In the case 𝑒𝑖 is not a conditional write-read, we use the convention

𝐶𝑖 = ∅. The set of events in 𝜉𝑖 is the following: 𝐸𝑖 = 𝐸𝑖−1 ∪ {𝑒𝑖 }
⋃

𝑦∈𝐶𝑖\{𝑜𝑖−1 } 𝑎𝑖 (𝑦). Observe that by
the choice of 𝐶𝑖 , the set 𝐸

𝑖
is well-defined.

Concerning notations, we use 𝑐 ⊕ 𝑎 to denote the context obtained by appending 𝑎 to the context

𝑐 = {𝐸, rb, ar} as the rb-maximum and ar-maximum event.

From 𝜉𝑖
0
, we define 𝜉𝑖 = 𝜉𝑖

0

seq(𝑎𝑖)
⋎ 𝑒𝑖 as the corrected execution of 𝜉 and 𝑒𝑖 with events 𝑎𝑖 . For

describing 𝜉𝑖 , we consider < to be a well-founded order over Objs. 𝜉𝑖 satisfies the following:

• so𝑖 : Let 𝑦 ∈ 𝐶𝑖 . We require that for every event 𝑒 ∈ 𝐸𝑖−1, (𝑒, 𝑎𝑖 (𝑦)) ∈ so𝑖 iff rep(𝑒) = 𝑟𝑖 , 0 ≤
𝑗 < 𝑖 . We also require that (init, 𝑎𝑖 (𝑦)) ∈ so𝑖 and (𝑎𝑖 (𝑦), 𝑒𝑖) ∈ so𝑖 . Finally, we require that
for every objects 𝑦′ ∈ 𝐶𝑖 , 𝑦

′ < 𝑦, (𝑎𝑖 (𝑦′), 𝑎𝑖 (𝑦)) ∈ so𝑖 .
• wr𝑖 : Let 𝑦 be an object in 𝐶𝑖 . For every object 𝑧, if 𝑧 ∈ 𝐶𝑖 and 𝑧 < 𝑦, we require

that (wr𝑖𝑧)−1 (𝑎𝑖 (𝑦)) = rspec(𝑎𝑖 (𝑦)) (𝑧, 𝑐𝑖 (𝑧) ⊕ 𝑎𝑖 (𝑧)); while otherwise, we require that

(wr𝑖𝑧)−1 (𝑎𝑖 (𝑦)) = rspec(𝑎𝑖 (𝑦)) (𝑧, 𝑐𝑖 (𝑧)). We also require that for every object 𝑧, if 𝑧 ∈ 𝐶𝑖 , then

(wr𝑖𝑧)−1 (𝑒𝑖) = rspec(𝑒𝑖) (𝑧, 𝑐𝑖 (𝑧) ⊕ 𝑎𝑖 (𝑧)), while otherwise, (wr𝑖𝑧)−1 (𝑒𝑖) = rspec(𝑒𝑖) (𝑧, 𝑐𝑖 (𝑧)).
• rb𝑖 : Let 𝑦 ∈ 𝐶𝑖 . We require that for every object 𝑦 ∈ 𝐶𝑖 and event 𝑒 s.t. (𝑒, 𝑎𝑖 (𝑦)) ∈ so𝑖 ∪ wr𝑖 ,
(𝑒, 𝑎𝑖 (𝑦)) ∈ rb𝑖 . Also, if Relv𝑖 = rb, we impose that (𝑒𝑖−1, 𝑎𝑖 (𝑦)) ∈ rb𝑖 . Finally, we require that
for every pair of events 𝑒, 𝑒′ ∈ 𝐸𝑖−1 s.t. (𝑒, 𝑒′) ∈ rb𝑖−1 and (𝑒′, 𝑎𝑖 (𝑦)) ∈ so𝑖 , (𝑒, 𝑎𝑖 (𝑦)) ∈ rb𝑖 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:43

• ar𝑖 : We impose that for every event 𝑒 ∈ 𝐸𝑖−1, (𝑒, 𝑎𝑖 (𝑦)) ∈ ar𝑖 , 𝑦 ∈ 𝐶𝑖 . We also require that for

every pair of objects 𝑦1, 𝑦2 ∈ 𝐶𝑖 s.t. 𝑦1, 𝑦2, (𝑎𝑖 (𝑦1), 𝑎𝑖 (𝑦2)) ∈ ar𝑖 .
We then define ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖) and 𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖). Observe that by construction of ℎ𝑖 and

𝜉𝑖 , they satisfy Definitions 3.2 and 3.4 respectively; so they are a history and an abstract execution

respectively. In particular, observe that 𝜉𝑖 is a correction of the abstract execution 𝜉𝑖−1
0

with events

𝑎𝑖 .

Finally, we define ℎ = (𝐸, so,wr) and 𝜉 = (ℎ, rb, ar) as, respectively, the history ℎlen(𝑣) and the

abstract execution 𝜉 len(𝑣) . We prove that 𝜉 is the abstract execution we were looking for.

First, we show that 𝜉 is valid w.r.t. 𝑛2: as 𝜉 is valid w.r.t. (CC,OpSpec) (Corollary B.13), so by

Lemma 6.4, it is valid w.r.t. (𝑛1,OpSpec). As 𝑛1 ≡OpSpec 𝑛2, 𝜉 is valid w.r.t. (𝑛2,OpSpec). Next, we
deduce in Proposition B.16 that OpSpec is maximally layered w.r.t. ar. For proving such result, we

rely on Propositions B.14 and B.15. Finally, we conclude in Proposition B.17 that the layer bound

of rspec is bounded by the number of arbitration-free suffixes of 𝑣 . However, this implies that 𝑣

is vacuous w.r.t. 𝑛2 (Proposition B.18); which is impossible by the choice of 𝑣 . The contradiction

arises from assuming that 𝑛1 is arbitration-free but 𝑛2 is not; so we conclude the result. □

Proposition B.10. Let OpSpec be a storage that allows multi-object write (resp. read-write) events
whose domain is not Objs. Then, for every pair of finite disjoint sets 𝐹1, 𝐹2 there exists a domain 𝐷 in
OpSpec s.t. 𝐹1 ⊆ 𝐷 but 𝐹2 ∩ 𝐷 = ∅.

Proof. The result is immediate as 𝐹1 is finite. Hence, by the assumptions on operation specifica-

tions (Section 7.4), 𝐹1 is a domain on OpSpec. □

Proposition B.11. Let 𝑣 be a visibility formula and 𝑖, 0 < 𝑖 ≤ len(𝑣). If conflictsOf (v, i) ≠ ∅
and Relv𝑖 = wr, OpSpec allows read-write events. If conflictsOf (v, i) = ∅ allows events that do not
unconditionally write.

Proof. Observe that as 𝑣 is non-vacuous w.r.t. (CMod,OpSpec), CMod \ {𝑣} .OpSpec CMod.
By Proposition B.6, there exists an execution 𝜉 valid w.r.t. CMod \ {𝑣}, an object 𝑧 and events

𝑓0, . . . 𝑓len(𝑣) s.t. 𝑣𝑧 (𝑓0, . . . 𝑓len(𝑣)) holds in 𝜉 .
On one hand, if conflictsOf (v, i) ≠ ∅ and Relv𝑖 = wr, as 𝜉 is valid w.r.t. CMod \ {𝑣}, there exists

𝑧 s.t. rspec(𝑓𝑖) (𝑧, [𝜉,CMod \ {𝑣}]) ≠ ∅. Also, conflictsOf (v, i) ≠ ∅ iff 𝑓𝑖 writes on some object 𝑧′.
Hence, 𝑓𝑖 is a read-write event.

On the other hand, if conflictsOf (v, i) = ∅, as 𝑣 is conflict-maximal w.r.t. OpSpec, event 𝑓𝑖 does
not necessarily write any object. Thus,OpSpec allows events that do not unconditionally write. □

Proposition B.12. The abstract execution 𝜉 described in Theorem B.9 satisfies that for every 𝑖, 0 ≤
𝑖 ≤ len(𝑣):

(1) For every object 𝑦 ∈ 𝐶𝑖 , the following conditions hold:
(a) For every object 𝑧 ∈ Objs, if 𝑧 ∈ 𝐶𝑖 and 𝑧 < 𝑦,𝐺 (𝑎𝑖 (𝑦), 𝑧) = 𝐹 𝑖 (𝑧) ∪ {𝑎𝑖 (𝑧)}, while otherwise,

𝐺 (𝑎𝑖 (𝑦), 𝑧) = 𝐹 𝑖 (𝑧).
(b) The execution 𝜉𝑖 ↾ 𝑦 is valid w.r.t. (CC,OpSpec).

(2) For the event 𝑒𝑖 , the following conditions hold:
(a) For every object 𝑧, if 𝑧 ∈ 𝐶𝑖 , 𝐺 (𝑒𝑖 , 𝑧) = 𝐹 𝑖 (𝑧) ∪ {𝑎𝑖 (𝑧)}, while otherwise 𝐺 (𝑒𝑖 , 𝑧) = 𝐹 𝑖 (𝑧).
(b) The execution 𝜉𝑖 is valid w.r.t. (CC,OpSpec).

where ctxt𝑧 (𝑒, [𝜉, CC]) = (𝐺 (𝑒, 𝑧), rb↾𝐺 (𝑒,𝑧)×𝐺 (𝑒,𝑧) , ar↾𝐺 (𝑒,𝑧)×𝐺 (𝑒,𝑧)).
Proof. We prove the result by induction. In particular, we show that for every 𝑖,−1 ≤ 𝑖 ≤ len(𝑣)

and object 𝑦, either (0) 𝑖 = −1 or (1) and (2) hold. The base case, 𝑖 = −1, is immediate as (0) holds;

so let us suppose that the result holds for every 𝑗,−1 ≤ 𝑗 < 𝑖 , and let us prove it for 𝑖 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:44 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

For proving the inductive step, we first prove (1) and then (2). As both (1) and (2) have an

identical proof (observe that the role of object 𝑦 in the former is just to declare that event 𝑎𝑖 (𝑦) is
well-defined), we present only the proof of (1).

We show (1) by transfinite induction. Let 𝛼 be an ordinal of cardinality |Objs|. For every 𝑘, 0 ≤
𝑘 ≤ 𝛼 , we denote by 𝑉𝑘 to the set containing the first 𝑘 elements in Objs according to <. We show

that (1) holds for every 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑖 .

The base, 𝑉0 is immediate as 𝑉0 = ∅. We thus focus on the successor case (i.e., showing that if

(1) holds for every object 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑖 it also holds for 𝑉𝑘+1), as the limit case is immediate: if 𝑘 is a

limit ordinal, 𝑉𝑘 =
⋃

𝑖,𝑖<𝑘 𝑉𝑖 ; so (1) immediately holds. For showing that (1) holds for every object

𝑦 ∈ 𝑉𝑘+1 ∩𝐶𝑖 , as by induction hypothesis it holds for every object 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑖 , it suffices to show

it for the only object 𝑦 ∈ 𝑉𝑘+1 \𝑉𝑖 . W.l.o.g., we can assume that 𝑦 ∈ 𝐶𝑖 ; as otherwise the result is

immediate.

We first prove (1a) and then we show (1b). Let 𝑧 ∈ Objs be an object. Two cases arise depending

on Relv𝑖 .
On one hand, if 𝑖 = 0 or 𝑖 > 0 ∧ Relv𝑖 = ar, 𝐹 𝑖 (𝑧) = {init}. As init ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧), it suffices

to show that the only non-initial event in 𝐸 in 𝐺 (𝑎𝑖 (𝑦), 𝑧) is 𝑎𝑖 (𝑧) (whenever 𝑧 ∈ 𝐶𝑖 and 𝑧 < 𝑦).

Observe that an event 𝑒 belongs to 𝐺 (𝑎𝑖 (𝑦), 𝑧) if wspec(𝑒) (𝑧, [𝜉, CC]) ↓ and (𝑒, 𝑎𝑖 (𝑦)) ∈ rb+. As
𝑎𝑖 (𝑦) ∈ 𝐸𝑖 , by construction of 𝜉 , 𝑒 must belong to 𝐸𝑖 , wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ and (𝑒, 𝑎𝑖 (𝑦)) ∈ (rb𝑖)+.

Observe that as either 𝑖 = 0 or 0 < 𝑖 ≤ len(𝑣) ∧ Relv𝑖 = ar, by definition of rb𝑖 , 𝑒 ∉ 𝐸𝑖−1. Thus, 𝑒
must be an event in 𝐸𝑖 \ 𝐸𝑖−1. Observe that by construction of 𝜉 , as (𝑒, 𝑎𝑖 (𝑦)) ∈ (rb𝑖)+, such event

must be an event 𝑎𝑖 (𝑤),𝑤 ∈ 𝐶𝑖 ,𝑤 < 𝑦. As 𝜉𝑖 = 𝜉𝑖
0

𝑎𝑖
⋎ 𝑒𝑖 , by induction hypothesis (1b), we deduce

that 𝜉𝑖 ↾ 𝑤 is valid w.r.t. (CC,OpSpec). Hence, as wspec(𝑎𝑖 (𝑤)) (𝑧, [𝜉𝑖 , CC]) ↓, we deduce thanks to
Property 1 of Definition 7.13 that 𝑧 = 𝑤 – so 𝑧 ∈ 𝐶𝑖 and 𝑧 < 𝑦.

On the other hand, if 0 < 𝑖 ≤ len(𝑣) ∧ Relv𝑖 ≠ ar, two sub-cases arise: 𝑧 ∈ 𝐶𝑖 , 𝑧 < 𝑦 or not. Both

cases are identical, so we present the former, i.e., if 𝑧 ∈ 𝐶𝑖 , 𝑧 < 𝑦, then 𝐹 𝑖 (𝑧) ∪ {𝑎𝑖 (𝑧)} = 𝐺 (𝑎𝑖 (𝑦), 𝑧).
For proving that 𝐹 𝑖 (𝑧) ∪ {𝑎𝑖 (𝑧)} ⊆ 𝐺 (𝑎𝑖 (𝑦), 𝑧), we split the proof in two blocks: showing that

𝐹 𝑖 (𝑧) ⊆ 𝐺 (𝑎𝑖 (𝑦), 𝑧) and showing that 𝑎𝑖 (𝑧) ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧).
For showing that 𝐹 𝑖 (𝑧) ⊆ 𝐺 (𝑎𝑖 (𝑦), 𝑧), let 𝑒 be an event in 𝐹 𝑖 (𝑧). In such case, to 𝑒 ∈ 𝐸𝑖−1,

wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ and (𝑒, 𝑒𝑖−1) ∈ (rb𝑖)∗. By the construction of 𝜉 , it is easy to see that any

such event belongs to 𝐸𝑖 , wspec(𝑒) (𝑧, [𝜉, CC]) ↓ and (𝑒, 𝑒𝑖−1) ∈ rb∗. As Relv𝑖 ≠ ar, we deduce

that (𝑒𝑖−1, 𝑎𝑖 (𝑦)) ∈ rb𝑖 ⊆ rb. Hence, (𝑒, 𝑎𝑖 (𝑦)) ∈ rb+; so 𝑒 ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧). This show that 𝐹 𝑖 (𝑧) ⊆
𝐺 (𝑎𝑖 (𝑦), 𝑧).

For showing that 𝑎𝑖 (𝑧) ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧), we observe that 𝜉𝑖 = 𝜉𝑖
0

𝑎𝑖
⋎ 𝑒𝑖 . As 𝑧 < 𝑦, by induc-

tion hypothesis (1b), 𝜉𝑖 ↾ 𝑧 is valid w.r.t. (CC,OpSpec). Thus, by Property 1 of Definition 7.13,

wspec(𝑎𝑖 (𝑧)) (𝑧, [𝜉𝑖 , CC]) ↓. Hence, wspec(𝑎𝑖 (𝑧)) (𝑧, [𝜉, CC]) ↓. As 𝑧 < 𝑦, (𝑎𝑖 (𝑧), 𝑎𝑖 (𝑦)) ∈ so𝑖 ⊆ so;
so we conclude that 𝑎𝑖 (𝑧) ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧).
We conclude the proof of the inductive step of (1a) by showing the converse i.e. 𝐹 𝑖 (𝑧) ∪ {𝑎𝑖 (𝑧)} ⊇

𝐺 (𝑎𝑖 (𝑦), 𝑧). Let 𝑒 ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧). First of all, by the definition of Causal visibility formula (see

Figure 4b), 𝑒 ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧) iffwspec(𝑒) (𝑧, [𝜉, CC]) ↓ and (𝑒, 𝑎𝑖 (𝑦)) ∈ rb+. Observe that if (𝑒, 𝑎𝑖 (𝑦)) ∈
rb+, by construction of 𝜉 , such event must belong to 𝐸𝑖 , wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ and (𝑒, 𝑎𝑖 (𝑦)) ∈
(rb𝑖)+. We prove that if 𝑒 ∈ 𝐸𝑖−1 then 𝑒 ∈ 𝐹 𝑖 (𝑧), while otherwise, if 𝑒 ∈ 𝐸𝑖 \ 𝐸𝑖−1, then 𝑒 = 𝑎𝑖 (𝑧).
If 𝑒 ∈ 𝐸𝑖−1, aswspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓,wspec(𝑒) (𝑧, [𝜉𝑖−1, CC]) ↓. Also, asRelv𝑖 ≠ ar and (𝑒, 𝑎𝑖 (𝑦)) ∈

(rb𝑖)+, we deduce that (𝑒, 𝑒𝑖−1) ∈ (rb𝑖−1)∗. In other words, 𝑒 ∈ 𝐹 𝑖 (𝑧).
Otherwise, if 𝑒 ∈ 𝐸𝑖 \ 𝐸𝑖−1, we note that by construction of 𝜉 , the only events in 𝐸𝑖 \ 𝐸𝑖−1 s.t.

(𝑒, 𝑎𝑖 (𝑦)) ∈ (rb𝑖)+ are events 𝑎𝑖 (𝑤),𝑤 ∈ 𝐶𝑖 ,𝑤 < 𝑦. As 𝜉𝑖 = 𝜉𝑖
0

seq(𝑎𝑖)
⋎ 𝑒𝑖 and 𝑧 < 𝑦, 𝜉𝑖 ↾ 𝑧 is valid

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:45

w.r.t. (CC,OpSpec). Thus, as wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓, by Property 1 of Definition 7.13 we conclude

that 𝑒 = 𝑎𝑖 (𝑧).
For concluding the inductive step, we show that (1b) holds. This is immediate by the definition

of wr𝑖 : for every event 𝑒 ∈ 𝜉𝑖 ↾ 𝑦, by induction hypothesis (1a) or (2a) – depending on whether

𝑒 = 𝑒 𝑗 or 𝑎 𝑗 (𝑤), where 0 ≤ 𝑗 ≤ 𝑖,𝑤 ∈ 𝐶𝑖 – (wr𝑖)−1𝑧 (𝑒) = rspec(𝑒) (CC, [𝜉𝑖 ↾ 𝑦, 𝑧]). Thus, 𝜉𝑖 ↾ 𝑦 is

valid w.r.t. (CC,OpSpec).
□

A consequence of Proposition B.12 is the following result.

Corollary B.13. The abstract execution 𝜉 described in Theorem B.9 is valid w.r.t. (CC,OpSpec).

Proposition B.14. The predicate 𝑣𝑥0 (𝑒0, . . . 𝑒len(𝑣)) holds in the abstract execution 𝜉 described in
Theorem B.9.

Proof. The proof is a simple consequence of 𝜉 ’s construction. To show that 𝑣𝑥0 (𝑒0, . . . 𝑒len(𝑣))
holds in 𝜉 , we first show that for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), (𝑒𝑖−1, 𝑒𝑖) ∈ Relv𝑖 and to then prove that

wrConsv𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in 𝜉 .
We prove that for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), (𝑒𝑖−1, 𝑒𝑖) ∈ Relv𝑖 . Four cases arise depending on Relv𝑖 .
• Relv𝑖 = so: In this case, by construction of events 𝑒𝑖−1, 𝑒𝑖 , we know that 𝑟𝑖 = 𝑟𝑖−1. Hence,

(𝑒𝑖−1, 𝑒𝑖) ∈ so𝑖 ⊆ so.
• Relv𝑖 = wr: In this case, we first show that there is an object 𝑦 ∈ 𝐷𝑖 ∩𝑊𝑖−1 \𝐶𝑖 , and then show

that (𝑒𝑖−1, 𝑒𝑖) ∈ wr𝑦 . For showing the first part, we distinguish between cases depending on

whether 𝑜𝑖−1 ∈ 𝐷𝑖 or not.

– 𝑜𝑖−1 ∈ 𝐷𝑖 : In this sub-case, we show that 𝑦 = 𝑜𝑖−1. On one hand, if conflictsOf (v, i) = ∅,
by the choice of event 𝑒𝑖 , 𝑜𝑖−1 ∈ 𝐷𝑖−1 \ 𝐶𝑖 . On the other hand, if conflictsOf (v, i) ≠ ∅,
as 𝑜𝑖−1 ∈ 𝐷𝑖 , we deduce that OpSpec allows multi-object read-write events. Observe

that as 𝑣 is conflict-maximal w.r.t. OpSpec, conflictsOf (v, i − 1) ≠ ∅. Hence, as OpSpec
allows multi-object read-write events, we deduce that 𝑜𝑖−1 ∈ 𝐷𝑖−1 \ 𝐶𝑖 . In both cases,

as conflictsOf (v, i − 1) ≠ ∅ and 𝑜𝑖−1 ∈ 𝐷𝑖−1, by the choice of𝑊𝑖−1, we conclude that

𝑜𝑖−1 ∈𝑊𝑖−1.
– 𝑜𝑖−1 ∉ 𝐷𝑖 : In this case, we show that 𝑦 = 𝑥𝑖 . On one hand, if conflictsOf (v, i) = ∅, 𝑋𝑖 = ∅;
so by the choice of 𝑥𝑖 (see Equation (48)), 𝑥𝑖 = 𝑥𝑖−1. By the choice of 𝐷𝑖 , 𝑥𝑖−1 ∈ 𝐷𝑖 \ 𝐶𝑖 .

Moreover, as 𝑣 is conflict-maximal w.r.t. OpSpec, conflictsOf (v, i − 1) ≠ ∅; so 𝑥𝑖−1 ∈ 𝑋𝑖−1.
By the choice of event 𝑒𝑖−1, 𝑋𝑖−1 ⊆𝑊𝑖−1. Altogether, we conclude that 𝑥𝑖 ∈𝑊𝑖−1.
On the other hand, if conflictsOf (v, i) ≠ ∅, we note that 𝑥𝑖 ∈ 𝐷𝑖 \ 𝐶𝑖 . As 𝑜𝑖−1 ∉ 𝐷𝑖 , we

deduce that OpSpec only allows single-object read-write events. Thus, 𝐷𝑖 = {𝑥𝑖 }. As 𝑣
is conflict-maximal w.r.t. OpSpec, we deduce that 𝑋𝑖 ⊆ 𝑋𝑖−1. As by the choice of 𝑒𝑖−1,
𝑋𝑖−1 ⊆𝑊𝑖−1, we conclude that 𝑥𝑖 ∈𝑊𝑖−1.

We prove now that (𝑒𝑖−1, 𝑒𝑖) ∈ wr𝑦 . First, we show that 𝑒𝑖−1 writes 𝑦 in 𝜉 . On one hand, if

𝑒𝑖−1 is an unconditional write event, wspec(𝑒𝑖−1) (𝑦, 𝑐𝑖 (𝑦)) ↓. On the other hand, if 𝑒𝑖−1 is
a conditional write event, as 𝜉 is valid w.r.t. (CC,OpSpec) (Corollary B.13) and 𝑦 ∈ 𝑊𝑖 , by

Property 2 of Definition 7.13, we deduce that wspec(𝑒𝑖−1) (𝑦, 𝑐𝑖 (𝑦)) ↓. Then, as Relv𝑖 = wr,
𝑒𝑖−1 ∈ 𝐹 𝑖 (𝑦). Observe that by construction of 𝜉 , 𝑒𝑖−1 is the ar-maximum event in 𝑐𝑖 (𝑦). We note

that as 𝑦 ∉ 𝐶𝑖 , by Proposition B.12, 𝐹 𝑖 (𝑦) = 𝐺 (𝑒𝑖 , 𝑦). To sum up, 𝑒𝑖−1 is the ar-maximum event

in ctxt𝑦 (𝑒𝑖 , [𝜉, CC]). As rspec is maximally layered, we deduce that 𝑒𝑖−1 ∈ rspec(𝑒𝑖) (𝑦, [𝜉, CC]).
Finally, as 𝜉 is valid w.r.t. CC (Corollary B.13), we conclude that (𝑒𝑖−1, 𝑒𝑖) ∈ wr𝑦 .

• Relv𝑖 = rb: In this case, we explicitly stated that (𝑒𝑖−1, 𝑒𝑖) ∈ rb𝑖 ⊆ rb during the construction

of 𝜉 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:46 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

• Relv𝑖 = ar: Similarly, by definition of ar𝑖 , we know that (𝑒𝑖−1, 𝑒𝑖) ∈ ar𝑖 ⊆ ar.

For showing that show that wrConsv𝑥 (𝑒0, . . . 𝑒len(𝑣)), we show that for every 𝑖, 0 ≤ 𝑖 ≤ len(𝑣)
and every set 𝐸 ∈ conflictsOf (v, i), the event 𝑒𝑖 writes on object 𝑦𝐸

8
. If 𝑒𝑖 is an unconditional write,

by the choice of 𝑒𝑖 , it writes on every object in 𝐷𝑖 . As 𝑦𝐸 ∈ 𝐷𝑖 , we conclude that 𝑒𝑖 writes on 𝑦𝐸 .

Otherwise, if 𝑒𝑖 is a conditional write, we observe that 𝑦𝐸 ∈𝑊𝑖 . Hence, as 𝜉
𝑖 = 𝜉𝑖

0

seq(𝑎𝑖)
⋎ 𝑒𝑖 and 𝜉

𝑖

is valid w.r.t. (CC,OpSpec) (Proposition B.12), we deduce using Property 2 of Definition 7.13 that

wspec(𝑒𝑖) (𝑦𝐸, [𝜉𝑖 , CC]) ↓. By construction of 𝜉 , we conclude that wspec(𝑒𝑖) (𝑦𝐸, [𝜉, CC]) ↓. □

Proposition B.15. Let 𝜉 be the abstract execution described in Theorem B.9. For every 𝑖, 0 ≤ 𝑖 < len(𝑣),
if the 𝜀𝑖 suffix of 𝑣 is non-arbitration-free, then (𝑒𝑖 , 𝑒len(𝑣)) ∉ rb+.

Proof. The proof is just an observation about the construction of 𝜉 : for every 𝑗, 0 < 𝑗 ≤ len(𝑣),
(𝑒 𝑗−1, 𝑒 𝑗) ∈ rb iff Relv𝑖 ≠ ar. Hence, (𝑒𝑖 , 𝑒len(𝑣) ∈ rb+) iff for every 𝑗, 𝑖 < 𝑗 ≤ len(𝑣), Rel𝑗 ≠ ar. In
particular, if the 𝜀𝑖 suffix of 𝑣 is non-arbitration-free, then (𝑒𝑖 , 𝑒len(𝑣)) ∉ rb+. □

Proposition B.16. Let OpSpec be a storage, CMod be a consistency model in normal form w.r.t.
OpSpec and 𝑣 be a visibility formula in CMod. If there exists an abstract execution 𝜉 = (ℎ, rb, ar)
valid w.r.t. CMod, an object 𝑥 and events𝑤, 𝑟 s.t. 𝑣𝑥 (𝑤, 𝑟) holds in 𝜉 but (𝑤, 𝑟) ∉ (rb)+, then OpSpec
is maximally layered w.r.t. ar.

Proof. First of all, as 𝑣𝑥 (𝑤, 𝑟) holds in 𝜉 ,𝑤 ∈ ctxt𝑥 (𝑟, [𝜉,CMod]). IfOpSpecwould be maximally

layered w.r.t. (rb)+, rspec(𝑟) (𝑥, [𝜉,CMod]) contains at least the first layer of ctxt𝑥 (𝑟, [𝜉,CMod])
w.r.t. rb. Hence, there would exist an event𝑤 ′

s.t.𝑤 ′ ∈ rspec(𝑟) (𝑥, [𝜉,CMod]) and (𝑤,𝑤 ′) ∈ (rb)+.
As 𝜉 is valid w.r.t. CMod, we deduce that (𝑤 ′, 𝑟) ∈ wr. By Definition 3.4, we deduce that (𝑤 ′, 𝑟) ∈ rb.
However, this implies that (𝑤,𝑤 ′) ∈ rb+; which contradicts the assumptions. Hence, OpSpec must

be maximally layered w.r.t. ar. □

Proposition B.17. Let OpSpec be a storage maximally layered w.r.t. ar, CMod be a consistency
model in normal form w.r.t. OpSpec and 𝑣 be a non-arbitration free visibility formula in CMod. Let
us suppose that there exists an abstract execution 𝜉 = (ℎ, rb, ar) valid w.r.t. CMod, an object 𝑥 and
events 𝑒0, . . . 𝑒len(𝑣) satisfying the following:
(1) for every non-initial event 𝑒 in 𝜉 , if 𝑒 ∉ {𝑒𝑖 | 0 ≤ 𝑖 ≤ len(𝑣)}, then 𝑒 does not write on 𝑥 in 𝜉 ,
(2) 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in 𝜉 , and
(3) for every non-arbitration-free 𝜀𝑘 -suffix of 𝑣 , (𝑒𝑘 , 𝑒len(𝑣)) ∉ rb+.

In such case, the layer bound of OpSpec is bounded by the number of arbitration-free suffixes of 𝑣 .

Proof. We reason by contradiction, assuming that 𝑘 is bigger than the number of saturable

suffixes of 𝑣 . We first show that rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]) contains less than 𝑘 events in

{𝑒𝑖 | 0 ≤ 𝑖 < len(𝑣)}, for then deduce that init ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]). After that, we
reach a contradiction by showing that 𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]) but (𝑒0, 𝑒len(𝑣)) ∉ wr;
which contradicts that 𝜉 is valid w.r.t. CMod.

We first show that rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]) contains less than 𝑘 events in {𝑒𝑖 | 0 ≤ 𝑖 < len(𝑣)}.
As 𝑣 contains less than 𝑘 saturable suffixes, by the Assumption 3, there is less than 𝑘 events in

{𝑒𝑖 | 0 ≤ 𝑖 < len(𝑣)} that write on 𝑥 in 𝜉 and that succeed 𝑒len(𝑣) w.r.t. rb+. As wr ⊆ rb (see

Definition 3.4), we deduce that wr−1𝑥 (𝑒len(𝑣)) contains less than 𝑘 events in {𝑒𝑖 | 0 ≤ 𝑖 < len(𝑣)}. As
𝜉 is valid w.r.t. CMod, wr−1𝑥 (𝑒len(𝑣)) = rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]); so we prove the first part.

8
For simplifying the proof, we abuse of notation and say that 𝑦𝐸 = 𝑥 if 𝐸 = 𝐸𝑥 . Observe that 𝑣 is conflict-maximal w.r.t.

OpSpec, either conflict𝑥 (𝐸𝑥) or conflict (𝐸𝑥) do not belong to 𝑣.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:47

For showing that init ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]), we observe that by the Assumption 1, no

other non-initial event in 𝜉 writes on 𝑥 in 𝜉 . Hence, rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]) contain less than

𝑘 non-initial events. As init ∈ ctxt𝑥 (𝑒len(𝑣) , [𝜉,CMod]), and OpSpec is maximally layered with

layer bound 𝑘 , we conclude that init ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]).
For proving that 𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]) but (𝑒0, 𝑒len(𝑣)) ∉ wr, we observe that by the

Assumption 2, 𝑒0 ∈ ctxt𝑥 (𝑒len(𝑣) , [𝜉,CMod]). As OpSpec is maximally layered w.r.t. ar, init ∈
rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]), (init, 𝑒0) ∈ ar and 𝑒0 ∈ ctxt𝑥 (𝑒len(𝑣) , [𝜉,CMod]); we conclude that
𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]).

For reaching a contradiction, we observe that 𝑣 is non-arbitration-free. Hence, by the Assump-

tion 3, (𝑒0, 𝑒len(𝑣)) ∉ rb. Once again, aswr ⊆ rb (see Definition 3.4), we deduce that 𝑒0 ∉ wr−1𝑥 (𝑒len(𝑣)).
However, as 𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑥, [𝜉,CMod]), we conclude that 𝜉 is not valid w.r.t. CMod; which
is contradicts the hypothesis. Thus, the layer bound of OpSpec is bounded by the number of

arbitration-free suffixes of 𝑣 . □

Proposition B.18. Let OpSpec = (𝐸, rspec, extract,wspec) be an operation specification maximally
layered w.r.t. ar, CMod be a consistency model in normal form w.r.t. OpSpec and 𝑣 be a simple,
conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility formula. If the layer bound of rspec is
smaller or equal by the number of arbitration-free suffixes of 𝑣 , then 𝑣 ∉ CMod.

Proof. Let 𝑣 be a simple, conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility formula.

We show that 𝑣 is vacuous w.r.t. CMod; so 𝑣 ∉ CMod.
We reason by contradiction, assuming that 𝑣 is non-vacuous w.r.t. CMod. In such case, CMod \

{𝑣} .OpSpec CMod but CMod \ {𝑣} ≼ CMod. By Proposition B.6, there exists an abstract execution

on OpSpec, and object 𝑥 , and events𝑤, 𝑟 s.t. rspec(𝑟) (𝑥, [𝜉,CMod]) \ ctxt𝑥 (𝑟, [𝜉,CMod \ {𝑣}]).
We observe that by Property 2 of Definition 7.4, 𝑤 ∈ ctxt𝑥 (𝑟, [𝜉,CMod]). Hence, as 𝑤 ∈

ctxt𝑥 (𝑟, [𝜉,CMod]) \ ctxt𝑥 (𝑟, [𝜉,CMod \ {𝑣}]), we deduce that 𝑣𝑥 (𝑤, 𝑟) holds in 𝜉 . As 𝑣 is sim-

ple, there exist events 𝑒0, . . . 𝑒len(𝑣) s.t. 𝑒0 = 𝑤 , 𝑒len(𝑣) = 𝑟 and 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in 𝜉 .
First of all, as rspec is maximally layered w.r.t. ar and 𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑒0, [𝜉,CMod]), every

event in {𝑒0, . . . 𝑒len(𝑣) } that writes 𝑥 is also in rspec(𝑒len(𝑣)) (𝑒0, [𝜉,CMod]). As 𝑣 is conflict-maximal

w.r.t. OpSpec, at least |𝐸𝑥 | events write on 𝑥 ; where 𝐸𝑥 ∈ P(𝜀0, . . . 𝑒len(𝑣)) s.t. conflict𝑥 (𝐸𝑥) ∈ 𝑣 .
Observe that for every event 𝑒𝑖 s.t. 𝜀𝑖 ∈ 𝐸𝑥 and suff𝑥 (v𝑥 , 𝑖) is arbitration-free, as CMod is

closed under causal suffixes, there exists a visibility formula 𝑣 ′ ∈ CMod s.t. 𝑣 ′𝑥 (𝑒𝑖 , 𝑒len(𝑣)).
Thus, |𝐸𝑥 | ≥ af (𝑣), where af (𝑣) is the number of arbitration-free suffixes of 𝑣 . Moreover, as

𝑒0 ∈ rspec(𝑒len(𝑣)) (𝑒0, [𝜉,CMod]), and 𝑣 is not arbitration-free, |𝐸𝑥 | > af (𝑣). However, as the layer
bound of rspec, 𝑘 , is smaller or equal than the number of arbitration-free suffixes of 𝑣 , the number

of events read by 𝑓len(𝑣) is at most af (𝑣). Hence, |𝐸𝑥 | ≤ af (𝑣), which contradicts that |𝐸𝑥 | > af (𝑣).
We reach a contradiction; so the initial hypothesis, that 𝑣 is non-vacuous w.r.t. CMod, is false. Thus,
𝑣 ∉ CMod. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:48 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

C Proof of the Basic Arbitration-Free Consistency Theorem
Let in the folloeing Spec = (CMod,OpSpec) be a basic storage specification. We show that there

exists an available Spec-implementation iff CMod is arbitration-free w.r.t. OpSpec.

C.1 Arbitration-Freeness Implies Availability
As discussed in Section 6, the proof of such result is decomposed in three steps:

(1) We show that arbitration-free consistency models w.r.t. OpSpec are weaker than CC
(Lemma 6.4).

(2) We deduce that available (CC,OpSpec)-implementations are also available (CMod,OpSpec)-
implementations as an immediate consequence of Lemma 6.5.

(3) We prove that there exists available (CC,OpSpec)-implementations (Lemma 6.6).

Lemma 6.4. Let Spec = (CMod,OpSpec) be a basic storage specification. If CMod is arbitration-free
w.r.t. OpSpec, then CMod is weaker than CC.

Proof. For showing that CMod is weaker than CC, let ℎ = (𝐸, so,wr) be a history and 𝜉 =

(ℎ, rb, ar) be an abstract execution of ℎ valid w.r.t. Spec. Let 𝑛 be a consistency model in normal

form that is OpSpec-equivalent to CMod. By Theorem B.1, such model always exists. As CMod
is arbitration-free, every visibility formula 𝑣 ∈ 𝑛 is arbitration-free. We conclude the result by

showing that 𝑛 ≼ CC, i.e. showing that for every object 𝑥 and every pair of distinct events 𝑒, 𝑒′ ∈ 𝐸,
if 𝑣𝑥 (𝑒, 𝑒′) holds in 𝜉 then 𝑣CC𝑥 (𝑒, 𝑒′) holds in 𝜉 as well; where 𝑣CC is Causal, the visibility formula of

CC (Figure 4b).
First, as 𝑣𝑥 (𝑒, 𝑒′) holds in 𝜉 , 𝑒 writes 𝑥 in 𝜉 and wr−1𝑥 (𝑒) ≠ ∅. Moreover, as 𝑣 is simple, for every

𝑖, 1 ≤ 𝑖 ≤ len(𝑣), Relv𝑖 ∈ {so,wr, rb}. By Property 2 of Definition 3.4, we deduce that (𝑒, 𝑒′) ∈ rb+.
Altogether, we conclude that 𝑣CC𝑥 (𝑒, 𝑒′) holds in 𝜉 . □

Lemma 6.6. Let OpSpec be a basic operation specification. There exists an available (CC,OpSpec)-
implementation.

Proof. We define an available implementation of SpecCC = (CC,OpSpec).
As discussed in Section 5, any implementation 𝐼𝐸 = (𝑆i, 𝐴i, 𝑠

i
0
,Δi) can be characterized by describ-

ing its set of states 𝑆i, its actions 𝐴i, its initial state 𝜎
i
0
and its transition function Δi.

First, we define 𝑆i as the set of possible values that each object may have; and the declare the

initial state any possible state in 𝑆i. Next, we define𝐴i via the synchronized actions Events× (Objs×
Events ∪ {∅}), as well as the local actions send and receive. We assume local actions are defined

in a similar way to Events, as tuples 𝑎 = (id, r, op,m), where id is an action identifier, r is a replica
identifier, op an operation identifier and m is additional metadata of the action. As for events, we

use id(𝑎), rep(𝑎), op(𝑎) and md(𝑎) for indicating the identifier, replica, operation and metadata of

an action 𝑎.

For describing its transition function, we rely on the definition of CC. As we design (𝑆i, 𝐴i, 𝑠
i
0
,Δi)

to be an available SpecCC-implementation, we require that any induced abstract execution must

be valid w.r.t. SpecCC. However, Definition 4.2 describes validity “a posteriori”, i.e. validity can

only be checked once the event is executed; while transition functions describe validity “a priori”,

i.e. describe a procedure to compute a write-read of a given, not yet added event. For solving

this issue, we observe that under CC, that the context of an event 𝑒 belonging to a synchronized

action 𝑎 = (𝑒,𝑚) only depends on (a) the transitive set of received actions before the last action

in its replica and (b) the synchronized actions executed in its own replica. Ensuring transitive

communication, i.e. ensuring that every send action on replica 𝑟 transmits information about all

synchronized actions executed or received on replica 𝑟 before such send action suffices to provide

CC.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:49

More in detail, for describing the transition function Δi (𝑡, 𝑎), we require that (1) 𝑎 is not present
in 𝑡 and (2) transitive communication is ensured. Also, we require a third condition depending on

the type of 𝑎:

• if 𝑎 is a synchronized action, we require that (3a) if 𝑎 represents a read operation, 𝑎 = (𝑒,𝑚),
then 𝑒 must read from the latest writing event w.r.t. ar (which coincides with the trace order)

received before 𝑙𝑡𝑟 ,

• if 𝑎 is a send action, then (3b) it precedes a synchronized action, and

• if 𝑎 is a receive action, then (3c) there exists a unique preceding send action that matches it.

where 𝑟 = rep(𝑎) and 𝑙𝑡𝑟 to the last action in trace 𝑡 whose replica is 𝑟 .

On one hand, (1) ensures that Δi (𝑡, 𝑒) is well-defined, i.e. in every trace of Δi, each action

contains each action exactly once. On the other hand, (2) and (3a) ensure that 𝐼𝐸 is a SpecCC-storage
implementation while (3b) and (3c) ensure that 𝐼𝐸 is an available storage implementation.

Formally, Δi (𝑡, 𝑎) ↓ if and only if 𝑎 ∉ 𝑡 and sat(𝑡, 𝑎) holds; and in such case Δi (𝑡, 𝑎) = 𝑡 ⊕ 𝑎. The
predicate sat(𝑡, 𝑎) is described in Equation (50).

sat(𝑡, 𝑎)=



𝑎 = (𝑒,𝑀𝑡 (𝑒)) if op(𝑎) ≠ send, receive
sendIfData(𝑡, 𝑎) if op(𝑎) = send
sendAllData(𝑡, 𝑎)
and maxSend(𝑡, 𝑎)
minRcv(𝑡, 𝑎) if op(𝑎) = receive
and maxRcv(𝑡, 𝑎)

(50)

where 𝑀𝑡 (𝑒) is the mapping assigning to the objext 𝑥 = obj(𝑒) the last event that writes on
𝑥 received by 𝑒 , formally defined using Equations (51) and (52); and the predicates sendIfData,
sendAllData, maxSend, minRcv and maxRcv are defined in Equations (53) to (56).

𝑀𝑡 (𝑒) =

[
𝑥 ↦→

{
{maxar𝑡𝑒 𝐸

𝑥
𝑡 (𝑒)} if 𝑥 = obj(𝑒)

∅ otherwise

]
𝑥∈Objs

𝐸𝑥𝑡 (𝑒) =

{
𝑒′

���� 𝑒′ ∈ Events ∩ 𝑡 ∧ 𝑒′ writes 𝑥 in exec(𝑡) ∧
(rep(𝑒′) = rep(𝑒) ∨ rec𝑡 (𝑒′, 𝑒))

}
ar𝑡𝑒 = ar↾𝐸𝑥

𝑡 (𝑒)×𝐸𝑥
𝑡 (𝑒)

(51)

rec𝑡 (𝑒′, 𝑒) = ∃𝑟, 𝑠 ∈ 𝑡 s.t.
∧ op(𝑟) = receive, rep(𝑟) = rep(𝑒),

op(𝑠) = send, rep(𝑠) = rep(𝑒′),
rb-Set(𝑠) = rb-Set(𝑟), 𝑒′ <𝑡 𝑠 <𝑡 𝑟 < 𝑒

′
(52)

sendIfData(𝑡, 𝑎)F op(𝑎′′) ≠ send (53)

where 𝑎′′ =max<𝑡

{
𝑎′ ∈ 𝑡

�� rep(𝑎′) = rep(𝑎) ∧ op(𝑎′) ≠ receive
}

sendAllData(𝑡, 𝑎)F ∀𝑎′ ∈ 𝑡 .rep(𝑎′) = rep(𝑎) ∧ op(𝑎′) ≠ send
=⇒ RV𝑥

𝑎′ ⊆ rb-Set(𝑎) (54)

where RV𝑥
𝑎′ =


{𝑒} if op(𝑎′) ≠ send, receive ∧

𝑎′ = (𝑒, _)
rb-Set(𝑎′) if op(𝑎′) = receive
∅ otherwise

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:50 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

maxSend(𝑡, 𝑎) F �𝑎′ ∈ 𝑡 .op(𝑎′) = send ∧ rb-Set(𝑎) = rb-Set(𝑎′) (55)

minRcv(𝑡, 𝑎) F ∃𝑎′ ∈ 𝑡 .op(𝑎′) = send ∧ rb-Set(𝑎) = rb-Set(𝑎′) (56)

maxRcv(𝑡, 𝑎) F �𝑎′ ∈ 𝑡 . op(𝑎′) = receive ∧ rep(𝑎) = rep(𝑎′) ∧ rb-Set(𝑎) = rb-Set(𝑎′) (57)

Note that as 𝐼𝐸 contains send and receive actions, as well as events along with their write-read

dependencies, 𝐼𝐸 is a storage implementation. For proving that 𝐼𝐸 is the searched implementation,

we introduce the following notation: for a trace 𝑡 and an event 𝑒 ∈ 𝑡 , prefix(𝑡, 𝑒) to the trace s.t.

Δ(prefix(𝑡, 𝑒), 𝑒) is a prefix of 𝑡 .
The rest of the proof, showing that 𝐼𝐸 is an available SpecCC-implementation, is a consequence

of Lemmas C.1 to C.3. □

Lemma C.1. The implementation 𝐼𝐸 is an SpecCC-implementation.

Proof. Let 𝑃𝐸 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp) be a program. We prove by induction on the length of all traces

in T𝑃𝐸 𝐼𝐸 that any trace 𝑡 is feasible and its induced abstract execution is valid w.r.t. SpecCC. The
base case, when 𝑡 = {(init𝑃𝐸 , init𝐼𝐸)} is immediate as 𝑡 contains exactly one event that does not

read any object. Hence, let us assume that for any trace 𝑡 ′ ∈ T𝑃𝐸 𝐼𝐸 of at most length 𝑘 , exec(𝑡 ′) is
valid w.r.t. SpecCC; and let us show that for any trace 𝑡 of length 𝑘 + 1, exec(𝑡) is also valid w.r.t.

SpecCC. Let ℎ = (𝐸, so,wr) and 𝜉 = (ℎ, rb, ar) be respectively the induced history history(𝑡) and the

induced abstract execution exec(𝑡) where ar coincides with the trace order. We denote sr to the

induced order between send-receive actions with the same rb-Set on 𝑡 . Before proving that 𝜉 is

valid w.r.t. SpecCC, we show that 𝑡 is feasible, i.e. 𝜉 satisfies Definition 3.4.

• rb = rb; so∗: This is immediate by the definition of induced receive-before.

• wr ∪ so ⊆ rb: By definition of rb, so ⊆ rb, so we focus on proving that wr ⊆ rb. Let 𝑤, 𝑟 be
events and 𝑥 be an object s.t. (𝑤, 𝑟) ∈ wr𝑥 . In such case, there is a pair of actions 𝑎𝑟 , 𝑎𝑤 s.t.

𝑟 ∈ 𝑎𝑟 , 𝑤 ∈ 𝑎𝑤 and 𝑤 ∈ wr-Set(𝑎𝑟) (𝑥). Hence, {𝑤} = maxar𝑡𝑒 𝐸
𝑥
𝑡 (𝑒). We deduce then that

rec𝑡 (𝑤, 𝑟) must hold; which implies that there exists a send action 𝑠 and a receive action 𝑣

s.t. rb-Set(𝑠) = rb-Set(𝑣) and 𝑤 <𝑡 𝑠 <𝑡 𝑣 <𝑡 𝑟 . By sendAllData predicate, 𝑤 ∈ rb-Set(𝑠).
As rb-Set(𝑠) = rb-Set(𝑣), 𝑤 ∈ rb-Set(𝑣). By the definition of induced abstract execution,

(𝑤, 𝑟) ∈ rb.
• rb ⊆ ar: For proving that rb ⊆ ar, as rb can be derived by sr and so, it suffices to prove that

both so, sr ⊆ ar. First, as so is the partial order induced by the total order <𝑡 on actions

executed on the same replica, so ⊆ ar.
Next, for proving that sr ⊆ ar, let 𝑠 be a send action and let 𝑣 be a receive action s.t.

(𝑠, 𝑣) ∈ sr. Let us consider 𝑝𝑡𝑣 = prefix(𝑡, 𝑣) be the prefix of 𝑡 before 𝑣 . On one hand, as 𝑝𝑡𝑣 is a

prefix of 𝑡 ′, Δi (𝑝𝑡𝑣, 𝑣) ↓. In particular, minRcv(𝑝𝑡𝑣, 𝑣) holds; so there is a send action 𝑠′ in 𝑝𝑡𝑣
s.t. rb-Set(𝑠′) = rb-Set(𝑣). We show that 𝑠′ = 𝑠 . Otherwise, then w.l.o.g. 𝑠 <𝑡 𝑠

′
. Note that

Δi (prefix(𝑡, 𝑠′), 𝑠′) ↓ as prefix(𝑡, 𝑠′) ⊕𝑠′ is a prefix of 𝑡 ′. In such case,maxSend(prefix(𝑡, 𝑠′), 𝑠′)
does not hold; which is impossible as Δi (prefix(𝑡, 𝑠′), 𝑠′) ↓. Therefore, 𝑠 = 𝑠′. As 𝑠′ ∈ 𝑝𝑡𝑣 , 𝑠
precedes 𝑣 in 𝑡 ; so (𝑠, 𝑣) ∈ ar.

After proving that 𝑡 is feasible, we show that 𝜉 is valid w.r.t. SpecCC. By Definition 4.2, we need

to show that for every event 𝑟 and object 𝑥 , if rspec(𝑟) ↑, wr−1𝑥 (𝑟) = ∅, and otherwise, wr−1𝑥 (𝑟) =
{maxar ctxt𝑥 (𝑟, [𝜉, CC])}. Let 𝑟 be a read event, 𝑥 be the object it affects and 𝑝 = prefix(𝑡, 𝑟). We

know by Equation (51) that wr−1𝑥 (𝑟) = {maxar𝑝𝑟
𝐸𝑥𝑝 (𝑟)}. Observe then that by Equation (51) and rb’s

definition, 𝐸𝑥𝑝 (𝑟) = ctxt𝑥 (𝑟, [𝑡, CC]). Thus, we conclude thatwr−1𝑥 (𝑟) = {maxar ctxt𝑥 (𝑟, [𝜉, CC])}. □

Lemma C.2. For every program 𝑃𝐸 and every trace 𝑡 of 𝐼𝐸 𝑃𝐸 , there is no replica waiting in 𝑡 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:51

Proof. Let 𝑃𝐸 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp) be a program, 𝑟 ∈ Reps be a replica and 𝑡 ∈ T𝑃𝐸 𝐼𝐸 be a reachable

trace. Let also be 𝑡1 ∈ T𝑃𝐸 and 𝑡2 ∈ T𝐼𝐸 traces s.t. 𝑡 = (𝑡1, 𝑡2). To prove that 𝑟 is not waiting in 𝑡 , let

us suppose that there exists an event 𝑒 ∈ Events𝑃𝐸 s.t. op(𝑒) ≠ end, rep(𝑒) = 𝑟 and Δ𝑃𝐸 (𝑡1, 𝑒) ↓,
and let us prove that there exists a non-receive action 𝑎 s.t. Δ𝐼𝐸 𝑃𝐸 (𝑡, 𝑎) ↓.
Let 𝑎 be the action (𝑒,𝑀𝑡 (𝑒)); where 𝑀𝑡 (𝑒) is described using Equation (51). We observe that

as Δ𝑃𝐸 (𝑡1, 𝑒) ↓, Δ𝑃𝐸 𝐼𝐸 (𝑡, ex) ↓. Moreover, op(𝑎) ≠ receive. Hence, 𝑟 is not waiting in 𝑡 ; so 𝐼𝐸 is

available. □

Lemma C.3. For every finite program 𝑃𝐸 , the composition 𝐼𝐸 𝑃𝐸 is also finite.

Proof. Let 𝑃𝐸 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp) be a finite program. The implementation 𝐼𝐸 is conditionally

finite on 𝑃𝐸 if for every trace 𝑡 ∈ T𝑃𝐸 𝐼𝐸 there exists a constant 𝑘𝑡 ∈ N s.t. len(𝑡) ≤ 𝑘𝑡 . Let thus

𝑡 ∈ T𝑃𝐸 𝐼𝐸 , 𝑡1 ∈ T𝑃𝐸 , 𝑡2 ∈ T𝐼𝐸 be traces s.t. 𝑡 = (𝑡1, 𝑡2). As 𝑃𝐸 is finite, the length of 𝑡1, len(𝑡1), is finite.
We show that 𝑘𝑡 F 3 · len(𝑡1) is the constant we search.

Three cases arise, depending on the type of action we consider. First, by maxRcv predicate, the
number of receive actions coincides with the number of receive actions with distinct metadata;

which by minRcv, is bounded by the number of send actions in the trace. Then, by sendIfData, the
number of send actions is bounded by the number of synchronized actions. Finally, by the parallel

composition definition, the number of synchronized actions in 𝑡 and 𝑡1 coincide; so such number is

bounded by len(𝑡1). Altogether, we deduce that len(𝑡) ≤ 3 · len(𝑡1) = 𝑘𝑡 . □

C.2 Availability Implies Arbitration-Freeness
As explained in Section 6, we prove the contrapositive: if CMod is not arbitration-free, then no

available Spec-implementation exists. Indeed, if CMod is not arbitration-free, every normal form

CMod′ ofCMod contains a simple visibility formula involving ar (see Definition 6.2). By Lemma 6.7,

such a formula precludes the existence of an available (CMod′,OpSpec)-implementation. Conse-

quently, there is no available (CMod,OpSpec)-implementation, since any such implementation

would also be an available (CMod′,OpSpec)-implementation – this is an easy observation asCMod
is equivalent to CMod′ (see Theorem B.1).

Proof. We assume by contradiction that there is an available implementation 𝐼𝐸 of Spec but
CMod contains a visibility formula 𝑣 s.t. for some 𝑖, 0 ≤ 𝑖 ≤ len(𝑣), Relv𝑖 = ar. We use the latter

fact to construct a specific program, which by the assumption, admits a trace (in the composition

with this implementation) that contains no receive action. We show that any abstract execution

induced by this trace, which is admissible by any available implementation of Spec, is not valid
w.r.t. Spec. This contradicts the hypothesis.
The program 𝑃 we construct generalizes the litmus program presented in Figure 1. 𝑃 uses two

replicas 𝑟0, 𝑟1, two distinguished objects 𝑥0, 𝑥1 and a collection of events 𝑒
𝑥𝑙
𝑖
, 0 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1}.

The events are used to “encode” two instances 𝑣𝑥0 and 𝑣𝑥1 of the visibility formula.

Let 𝑑𝑣 be the largest index 𝑖 s.t. Relv𝑖 = ar (last occurrence of ar). Then, 𝑣 is formed of two parts:

the path of dependencies from 𝜀0 to 𝜀𝑑𝑣 which is not arbitration-free, and the suffix from 𝜀𝑑𝑣 up to

𝜀len(𝑣) , the arbitration-free part. Thus, v is of the form:

v𝑥 (𝜀0, 𝜀len(𝑣)) F ∃𝜀1, . . . , 𝜀𝑛−1 .
len(𝑣)∧
𝑖=1

(𝜀𝑖−1, 𝜀𝑖) ∈ Relv𝑖 ∧ 𝜀0 writes 𝑥 ∧ wr−1𝑥 (𝜀len(𝑣)) ≠ ∅

where Rel𝑣𝑖 ∈ {so,wr, rb, ar}, for all 𝑖 < 𝑑𝑣 , Rel𝑣𝑑𝑣 = ar, and Rel𝑣𝑖 ∈ {so,wr, rb} for all 𝑖 > 𝑑𝑣 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:52 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

In the construction, we require that replica 𝑟𝑙 executes events 𝑒
𝑥𝑙
𝑖

if 𝑖 < 𝑑𝑣 and events 𝑒
𝑥1−𝑙
𝑖

otherwise – the replica 𝑟𝑙 executes the non arbitration-free part of 𝑣 for object 𝑥𝑙 and the arbitration-

free suffix of 𝑣 for 𝑥1−𝑙 . All objects in replica 𝑟𝑙 access (read and/or write) 𝑥𝑙 except 𝑒
𝑥𝑙
len(𝑣) , which

access with 𝑥1−𝑙 . We denote by 𝑥
𝑥𝑙
𝑖

to the unique object that event 𝑒
𝑥𝑙
𝑖

reads and/or writes.

More in detail, we construct a set of events, 𝐸𝑖 , histories, ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖), and executions,

𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖), 0 ≤ 𝑖 ≤ len(𝑣) inductively, starting from an initial event init, and incorporating

at each time a pair of new events, 𝑒
𝑥0
𝑖

and 𝑒
𝑥1
𝑖
. For simplifying notation, we use the convention

init = 𝑒
𝑥0
−1 = 𝑒

𝑥1
−1.

For the inductive step, we assume that the abstract execution 𝜉𝑖−1 = (ℎ𝑖−1, rb𝑖−1, ar−1) associ-
ated to the history ℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) contains events 𝑒𝑥0−1 . . . 𝑒

𝑥0
𝑖−1, 𝑒

𝑥1
𝑖−1 and is well-defined

(satisfies Definition 3.4) and we construct the history ℎ𝑖 and the abstract execution 𝜉𝑖 .

We distinguish between cases depending on the value 𝑖:

• 𝑖 = 0: In this case, we consider 𝑒0 be an event s.t. wspec(𝑒𝑥𝑙
0
) (wval(init) (𝑥𝑥𝑙

𝑖
)) ↓.

• 0 < 𝑖 < len(𝑣), Relv𝑖 = wr and Relv𝑖+1 = wr: In this case, it is easy to see that by Propo-

sition B.11, OpSpec allows atomic read-write events. We consider 𝑒
𝑥𝑙
𝑖

be an event s.t.

rspec(𝑒𝑥𝑙
𝑖
) ↓ and wspec(𝑤𝑥𝑙

𝑖
) (valuewr𝑖−1 (𝑤𝑥𝑙

𝑖
, 𝑥

𝑥𝑙
𝑖
)) ↓.

• 0 < 𝑖 < len(𝑣) and Relv𝑖 ≠ wr and Relv𝑖+1 = wr: In this case, if OpSpec allows unconditional

writes, then we select 𝑒
𝑥𝑙
𝑖

as an unconditional write event on object 𝑥
𝑥𝑙
𝑖
. Otherwise, we select

event 𝑒
𝑥𝑙
𝑖

s.t. rspec(𝑒𝑥𝑙
𝑖
) ↓ and wspec(𝑒𝑥𝑙

𝑖
) (wval(𝑤𝑥𝑙

𝑖
) (𝑥𝑥𝑙

𝑖
)) ↓.

• 0 < 𝑖 < len(𝑣) and Relv𝑖+1 ≠ wr: In this case, we select 𝑒
𝑥𝑙
𝑖

to not write 𝑥
𝑥𝑙
𝑖

unless it is

necessary. If OpSpec allows read events that are not write events, or if allows condi-

tional atomic read-write events, we select 𝑒
𝑥𝑙
𝑖

as an event such that rspec(𝑒𝑥𝑙
𝑖
) ↓ but

wspec(𝑒𝑥𝑙
𝑖
) (wval(𝑤𝑥𝑙

𝑖
) (𝑥𝑥𝑙

𝑖
)) ↑. Otherwise, we select event 𝑒𝑖 such that rspec(𝑒𝑥𝑙

𝑖
) ↓ and

wspec(𝑒𝑥𝑙
𝑖
) (wval(𝑤𝑥𝑙

𝑖
) (𝑥𝑥𝑙

𝑖
)) ↓.

• 𝑖 = len(𝑣): In this case, we consider 𝑒
𝑥𝑙
len(𝑣) to be an event that reads object 𝑥

𝑥𝑙
𝑖
, i.e.

rspec(𝑒𝑥𝑙len(𝑣)) ↓.

where 𝑙 ∈ {0, 1} and𝑤𝑥𝑙
𝑖

= maxar𝑖−1 {𝑒 ∈ 𝐸𝑖−1 | wspec(𝑒) (obj(𝑒𝑥𝑙𝑖)) ↓ ∧ (𝑒, 𝑒𝑥𝑙
𝑖
) ∈ so𝑖 }. We note that

as init writes on every object,𝑤
𝑥𝑙
𝑖

is well-defined.

First of all, observe that event 𝑒
𝑥𝑙
𝑖

is well-defined thanks to Lemma C.4 and the assumptions on

OpSpec (Section 4.3). We denote 𝐸𝑖 = 𝐸𝑖−1 ∪ {𝑒𝑥0
𝑖
, 𝑒

𝑥1
𝑖
}. We observe that w.l.o.g., we can assume

that the id(𝑒𝑥0
𝑖
) is bigger than every identifier of an event in 𝐸𝑖−1 and that id(𝑒𝑥0

𝑖
) < id(𝑒𝑥1

𝑖
).

We conclude the description of ℎ𝑖 and 𝜉𝑖 by specifying the relations so𝑖 ,wr𝑖 , rb𝑖 , ar𝑖 . We require

that so𝑖 (resp. wr𝑖 , rb𝑖 , ar𝑖) contains so𝑖−1 (resp. wr𝑖−1, rb𝑖−1, ar𝑖−1). Also, we require additional
constrains on them due to event 𝑒𝑖 :

• so𝑖 : We require that (𝑒, 𝑒𝑥𝑙
𝑖
) ∈ so𝑖 iff rep(𝑒) = rep(𝑒𝑥𝑙

𝑖
); as well as (init, 𝑒𝑥𝑙

𝑖
) ∈ so𝑖 .

• wr𝑖 : If 𝑒𝑥𝑙
𝑖

is not a read event, we require that wr𝑖𝑥𝑖
−1 (𝑒𝑥𝑙

𝑖
) ≠ ∅. Otherwise, we require that

({𝑤𝑥𝑙
𝑖
}, 𝑒𝑥𝑙

𝑖
) ∈ wr𝑖𝑥𝑖 .

• rb𝑖 : We require that rb𝑖 = so𝑖 .
• ar𝑖 : We impose that for every event 𝑒 ∈ 𝐸𝑖 , (𝑒, 𝑒𝑥𝑙

𝑖
) ∈ ar𝑖 . Also, we impose that (𝑒𝑥0

𝑖
, 𝑒

𝑥1
𝑖
) ∈ ar𝑖 .

Then, we define Eventsp = 𝐸len(𝑣) as the set our program employs. The set Eventsp induces the
set of traces Tp.

We define the program 𝑃 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp), where initp = init and Δp is the transition function

defined as follows: for every trace 𝑡 ∈ Tp and event 𝑒 ∈ Eventsp, Δp (𝑡, 𝑒) ↓ if and only if 𝑒 ∉ 𝑡 and

every event in Eventsp whose replica coincide with 𝑒 and has smaller identifier than 𝑒 is included

in 𝑡 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:53

Given such a program 𝑃 , the proof proceeds as follows:

(1) There exists a finite trace 𝑡 of 𝑃 𝐼𝐸 that contains no receive action (Lemma C.5): Since 𝐼𝐸 is

available, it can always delay receiving messages, and execute other actions instead. Then, as

𝑃 is a finite program, such an execution must be finite.

(2) The trace 𝑡 induces a history ℎv = (𝐸, so,wr) and an abstract execution 𝜉v = (ℎ, rb, ar) where
rb = so (ar is arbitrary as long as rb ⊆ ar). As 𝐼𝐸 is valid w.r.t. Spec, 𝜉v is valid w.r.t. Spec.
Next, we prove that since rb = so, events in 𝜉v read the latest value w.r.t. so written on their

associated object in 𝜉v (Lemma C.6). In particular, we deduce that all traces of 𝑃 without

receive events induce the same history and therefore, the induced history does not change

when the induced arbitration order changes.

(3) Since ar is a total order, either (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar or (𝑒𝑥1

𝑑v−1, 𝑒
𝑥0
𝑑v−1) ∈ ar. W.l.o.g., assume that

(𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar. By Lemma C.7, we deduce that 𝑒

𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(𝑣) , [𝜉v,CMod]). The proof

is explained in Figure 5: if (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar, then all events 𝑒

𝑥0
𝑖

form a path in such way that

v𝑥0 (𝑒
𝑥0
0
, . . . 𝑒

𝑥0
len(𝑣)) holds in 𝜉v.

(4) Since 𝑒
𝑥0
len(𝑣) is the only event at 𝑟1 that reads or writes 𝑥0 and events in 𝜉v read the

latests values w.r.t. so in 𝜉v, we deduce that 𝑒
𝑥0
len(𝑣) reads 𝑥0 from init. However, as

𝑒
𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(𝑣) , [𝜉v,CMod]) and init precedes 𝑒

𝑥0
0

in arbitration order, we deduce

that 𝑒
𝑥0
len(𝑣) does not read the latest value w.r.t. ar, i.e. rspec(𝑒𝑥0len(𝑣)) ↓ but wr−1𝑥0 (𝑒

𝑥0
len(𝑣)) ≠

{maxar ctxt𝑥0 (𝑒
𝑥0
len(𝑣) , [𝜉v,CMod])}. Therefore, 𝜉v is not valid w.r.t. Spec (see Definition 4.2).

This contradicts the hypothesis that 𝐼𝐸 is an implementation of Spec. □

Lemma C.4. Let Spec = (CMod,OpSpec) be a storage specification s.t. CMod is in normal form
w.r.t. OpSpec. For every visibility formula 𝑣 ∈ CMod, there exists an abstract execution valid w.r.t.
Spec, 𝜉 , an object 𝑥 and events 𝑒0, . . . 𝑒len(𝑣) s.t. rspec(𝑒len(𝑣)) ↓ and 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in 𝜉 .

Proof. Let 𝑣 ∈ CMod be a visibility formula. As CMod is normal form w.r.t. OpSpec, 𝑣 is non-
vacuous; so CMod . CMod \ {𝑣}. Hence, there exists an abstract execution valid w.r.t. Spec, 𝜉 , an
object 𝑥 and a read event 𝑟 s.t. ctxt𝑥 (𝑟, [𝜉,CMod]) ≠ ctxt𝑥 (𝑟, [𝜉,CMod \ {𝑣}]). As CMod \ {𝑣} ≼
CMod, we conclude that there exists events 𝑒0, . . . 𝑒len(𝑣) s.t. 𝑟 = 𝑒len(𝑣) and 𝑣𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds
in 𝜉 . □

Lemma C.5. For every available storage implementation, 𝐼𝐸 , there exists finite reachable trace
𝑡 ∈ T𝑃 𝐼𝐸 s.t.

(1) 𝑡 does not contain any action 𝑎 s.t. op(𝑎) = receive.
(2) for every event 𝑒 ∈ Eventsp there exists exactly one action 𝑎 ∈ 𝑡 s.t. ev(𝑎) = 𝑒 and,
(3) for every two actions 𝑎, 𝑎′ ∈ 𝑡 in the same replica, if ev(𝑎) ↓, ev(𝑎′) ↓ and id(ev(𝑎)) <

id(ev(𝑎′)), then 𝑎 <𝑡 𝑎
′

Proof. Let 𝐼𝐸 be an available storage implementation. We construct a sequence of traces {𝑡𝑖 }𝑖∈N
s.t. for each 𝑖 ∈ N (1) 𝑡𝑖 does not contain any receive action, (2a) for every event 𝑒 ∈ Eventsp s.t.
id(𝑒) ≤ id(lastrep(𝑒) (𝜋1 (𝑡𝑖))) there is exactly one action 𝑎 ∈ 𝑡𝑖 s.t. ev(𝑎) = 𝑒 , (2b) for every event

𝑒 ∈ Eventsp s.t. id(𝑒) > id(lastrep(𝑒) (𝜋1 (𝑡𝑖))) there is no action 𝑎 ∈ 𝑡𝑖 s.t. ev(𝑎) = 𝑒 , and (3) for

every two actions 𝑎, 𝑎′ ∈ 𝑡 , if ev(𝑎) ↓, ev(𝑎′) ↓ and id(ev(𝑎)) < id(ev(𝑎′)), then 𝑎 <𝑡𝑖 𝑎
′
.

Let 𝑡0 = init𝑃 𝐼𝐸 be the first trace of our sequence. Clearly, 𝑡0 satisfy properties (1), (2a), (2b)

and (3). Then, let 𝑛 ∈ N and, assuming that the trace 𝑡𝑛 satisfy properties (1), (2a), (2b) and (3), we

define 𝑡𝑛+1. If for every replica 𝑟 and every event 𝑒 ∈ Eventsp, Δp (𝜋1 (𝑡𝑛), 𝑒) ↑, we define 𝑡𝑛+1 = 𝑡𝑛 .
If not, let 𝑟𝑛 be a replica and 𝑒𝑛 ∈ Eventsp be an event s.t. Δp (𝜋1 (𝑡𝑛), 𝑒𝑛) ↓. As 𝐼𝐸 is available, there

exists an action 𝑎𝑛 s.t. op(𝑎′𝑛) ≠ receive and Δ𝑃 𝐼𝐸 (𝑡𝑛, 𝑎𝑛) ↓. We then define 𝑡𝑛+1 = Δ𝑃 𝐼𝐸 (𝑡𝑛, 𝑎𝑛).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:54 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

By induction hypothesis on 𝑡𝑛 , 𝑡𝑛 satisfies properties (1), (2a), (2b) and (3). We show that 𝑡𝑛+1

also satisfies (1), (2a), (2b) and (3). Without loss of generality, we assume that 𝑡𝑛+1 ≠ 𝑡𝑛 as otherwise

the result immediately holds. First, as 𝑡𝑛 satisfies (1) and 𝑎𝑛 is not a receive action, 𝑡𝑛+1 satisfies
property (1). Properties (2a) and (2b) immediately hold from the definition of Δ𝑃 𝐼𝐸 .

Finally, for proving that 𝑡𝑛+1 satisfies (3), let 𝑎, 𝑎′ ∈ 𝑡𝑛 be distinct actions s.t. ev(𝑎) ↓, ev(𝑎′) ↓
and id(ev(𝑎)) < id(ev(𝑎′)). If 𝑎, 𝑎′ ≠ 𝑎𝑛 , as 𝑡

𝑛
satisfies (3), 𝑎 <𝑡𝑛 𝑎

′
and therefore, 𝑎 <𝑡𝑛+1 𝑎

′
.

Otherwise, note that as 𝑡𝑛 satisfies (2b), for every event 𝑒 ∈ 𝜋1 (𝑡𝑛), id(𝑒) ≤ id(ev(𝑎𝑛)). Moreover,

as no two events in Eventsp have identical identifier, traces do not contain the same event twice

and 𝑎 ≠ 𝑎′, we deduce that 𝑎′ = 𝑎𝑛 . As 𝑎𝑛 = last𝑟𝑛 (𝑡𝑛+1), we conclude that 𝑎 <𝑡𝑛+1 𝑎
′
.

By construction, 𝑡∞ is a trace in T𝑃 𝐼𝐸 . As 𝑃 is finite and 𝐼𝐸 is available, every trace 𝑡 ∈ T𝑃 𝐼𝐸 is

finite. We show by contradiction that there exists some 𝑘 ∈ N s.t. 𝑡𝑘 = 𝑡𝑘+1. Consider the sucession
of traces {𝑡𝑛}𝑛∈N and let us assume that 𝑡𝑘 ≠ 𝑡𝑘+1 for any 𝑘 ∈ N. In such case, we define 𝑡∞ as the

limit of such sucession, i.e., the trace obtained by executing events actions 𝑎𝑖 , 0 ≤ 𝑖 ≤ N (which are

well-defined by construction). Such infinite trace belongs to T𝑃 𝐼𝐸 . However, as 𝑃 is finite and 𝐼𝐸 is

available, every trace 𝑡 ∈ T𝑃 𝐼𝐸 is finite. Thus, 𝑡∞ must be finite; which contradicts its construction.

Hence, such 𝑘 exists.

We show that the trace 𝑡𝑘 is the searched trace. Clearly, as 𝑡𝑘 satisfies (1) and (3), it suffices to

prove that it also satisfies (2). On one hand, as 𝑡𝑘 = 𝑡𝑘+1, for every event 𝑒 ∈ 𝑃 , Δp (𝜋1 (𝑡𝑘), 𝑒) ↑.
Hence, for every replica 𝑟𝑙 , 𝑙 ∈ {0, 1}, last𝑟 (𝜋1 (𝑡𝑘)) = 𝑒𝑥1−𝑙len(𝑣) . By construction of Eventsp, every

event 𝑒 ∈ Eventsp with replica 𝑟𝑙 has smaller identifier than 𝑒
𝑥1−𝑙
len(𝑣) . Therefore, as 𝑡

𝑘
satisfies (2a),

there is exactly one action 𝑎′ ∈ 𝑡𝑘 s.t. ev(𝑒′) = 𝑒; so 𝑡𝑘 satisfies (2).

□

Lemma C.6. For every pair of indices 𝑖,−1 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1},
• If 𝑒𝑥𝑙

𝑖
is a read event, then ({𝑤𝑥𝑙

𝑖
}, 𝑒𝑥𝑙

𝑖
) ∈ wr

𝑥̃
𝑥𝑙
𝑖
.

• If 𝑒𝑥𝑙
𝑖

is a write event s.t. wval(𝑒𝑥𝑙
𝑖
) (𝑥𝑥𝑙

𝑖
) ↓, then wspec(𝑒𝑥𝑙

𝑖
) (wval(𝑤𝑥𝑙

𝑖
) (𝑥𝑥𝑙

𝑖
)) ↓.

Proof. We prove the result by induction on 𝑖; where the base case, 𝑖 = −1, trivially holds. For

showing the inductive case, let us assume that the result holds for every event 𝑒
𝑥𝑙 ′
𝑖′ ,−1 ≤ 𝑖′ < 𝑖, 𝑙 ′ ∈

{0, 1}, and let us show it for events 𝑒
𝑥0
𝑖
, 𝑒

𝑥1
𝑖
. We divide the proof in two blocks, whether 𝑒

𝑥𝑙
𝑖

is a read

event, and 𝑒
𝑥𝑙
𝑖

is a write event.

For the first part, we note that by construction of 𝜉𝑣 using Lemma C.5 we know that 𝜉𝑣 does

not contain any receive event, rb = so. Hence, as 𝜉𝑣 is valid w.r.t. Spec, wr ⊆ rb = so. Thus,
𝑒
𝑥𝑙
𝑖

reads 𝑥
𝑥𝑙
𝑖

from an event that precedes it in session order. In particular, by Definition 4.2,

wr−1
𝑥̃
𝑥𝑙
𝑖

(𝑒𝑥𝑙
𝑖
) = {maxar ctxt𝑥̃𝑥𝑙

𝑖
(𝑒𝑥𝑙

𝑖
, [𝜉𝑣,CMod])}; so wr−1

𝑥̃
𝑥𝑙
𝑖

(𝑒𝑥𝑙
𝑖
) = {𝑤𝑥𝑙

𝑖
}.

For the second part, we can assume w.l.o.g. that 𝑒
𝑥𝑙
𝑖

is a conditional write, as otherwise the result

immediately holds. By the choice of 𝑒
𝑥𝑙
𝑖
, in this case, we conclude thatwspec(𝑒𝑥𝑙

𝑖
) (wval(𝑤𝑥𝑙

𝑖
) (𝑥𝑥𝑙

𝑖
)) ↓

.

□

Lemma C.7. For every 𝑙 ∈ {0, 1}, if (𝑒𝑥𝑙
𝑑𝑣−1, 𝑒

𝑥1−𝑙
𝑑𝑣−1) ∈ ar, then 𝑒𝑥𝑙

0
∈ ctxt𝑥𝑙 (𝑒

𝑥𝑙
len(𝑣) , [𝜉𝑣,CMod]).

Proof. For proving that 𝑒
𝑥𝑙
0

∈ ctxt𝑥𝑙 (𝑒
𝑥𝑙
len(𝑣) , [𝜉𝑣,CMod]), we show that 𝑣𝑥𝑙 (𝑒

𝑥𝑙
0
, 𝑒

𝑥𝑙
len(𝑣)) holds in 𝜉𝑣 .

Observe that by the choice of events and Lemma C.6 𝑒
𝑥𝑙
0
writes 𝑥𝑙 in 𝜉𝑣 and wr−1𝑥𝑙 (𝑒

𝑥𝑙
len(𝑣)) ≠ ∅ holds

in 𝜉𝑣 . Therefore, to conclude the result, we prove that for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ Rel𝑣𝑖 .

For proving it, we observe that CMod is in simple form. Thus, for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), Relv𝑖
is either so,wr, rb or ar; which simplify our analysis. First, if 𝑖 = 𝑑𝑣 , by definition of 𝑑𝑣 , Relv𝑖 = ar.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:55

By hypothesis, (𝑒𝑥𝑙
𝑑𝑣−1, 𝑒

𝑥1−𝑙
𝑑𝑣−1) ∈ ar. In such case, as id(𝑒𝑥1−𝑙

𝑑𝑣−1) < id(𝑒𝑥𝑙
𝑑𝑣
) and rep(𝑒𝑥1−𝑙

𝑑𝑣−1) = rep(𝑒𝑥𝑙
𝑑𝑣
),

(𝑒𝑥1−𝑙
𝑑𝑣−1, 𝑒

𝑥𝑙
𝑑𝑣
) ∈ so. Therefore, as so ⊆ ar and ar is a transitive relation, we deduce that (𝑒𝑥𝑙

𝑑𝑣−1, 𝑒
𝑥𝑙
𝑑𝑣
) ∈ ar.

Next, if 𝑖 ≠ 𝑑𝑣 , we notice that (𝑒𝑥0𝑖−1, 𝑒
𝑥0
𝑖
) ∈ so ⊆ rb ⊆ ar. Hence, if Relv𝑖 is either so, rb or ar, the

result immediately holds. Otherwise, if Rel𝑣𝑖 = wr, we show that 𝑒
𝑥0
𝑖

is a read event and 𝑒
𝑥0
𝑖−1 = 𝑤

𝑥0
𝑖
;

which let us conclude that (𝑒𝑥0
𝑖−1, 𝑒

𝑥0
𝑖
) ∈ wr thanks to Lemma C.6.

First, we show that if 𝑖 ≠ len(𝑣) and Relv𝑖 = wr, then 𝑤𝑥𝑙
𝑖

= 𝑒
𝑥𝑙
𝑖−1. Thanks to the choice of

𝑃 , if Relv𝑖 = wr, then 𝑒𝑥𝑙
𝑖

is a write event s.t. wval(𝑒𝑥𝑙
𝑖−1) (𝑥

𝑥𝑙
𝑖
) ↓. By Lemma C.6, we deduce that

𝑒
𝑥𝑙
𝑖−1 writes 𝑥

𝑥𝑙
𝑖−1 in 𝜉𝑣 . As 𝑖 ≠ len(𝑣), 𝑥𝑥𝑙

𝑖−1 = 𝑥
𝑥𝑙
𝑖
. Also, as Relv𝑖 = wr, rep(𝑒𝑥𝑙

𝑖
) = rep(𝑒𝑥𝑙

𝑖−1). Altogether,
we deduce that 𝑒

𝑥𝑙
𝑖−1 is an event writing 𝑥

𝑥𝑙
𝑖

that is the immediate predecessor of 𝑒
𝑥𝑙
𝑖

w.r.t. so. Hence,
𝑤

𝑥𝑙
𝑖

= 𝑒
𝑥𝑙
𝑖−1.

Finally, we show that Rel𝑣len(𝑣) ≠ wr and conclude the result. We prove the contrapositive, that

if Relvlen(𝑣) = wr, 𝑣 is vacuous w.r.t. Spec. If Relvlen(𝑣) = wr, for every abstract execution 𝜉 ′ valid

w.r.t. Spec, object 𝑥 and a collection of events 𝑓0, . . . 𝑓len(𝑣) , if 𝑣𝑥 (𝑓0, . . . , 𝑓len(𝑣)) holds in 𝜉 ′, then
(𝑓len(𝑣)−1, 𝑓len(𝑣)) ∈ wr. Thus, 𝜉 ′ is valid w.r.t. (CMod \ {𝑣},OpSpec). Hence, 𝑣 is vacuous w.r.t.
OpSpec. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:56 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

D Proof of the Arbitration-Free Consistency Theorem
Lemmas 8.2 and D.1 prove the AFC theorem.

D.1 Arbitration-Freeness Implies Availability
The proof of (1) =⇒ (2), essentially coincides with that of Lemma 6.6: we present an available Spec-
implementation that guarantees CC. As in Lemma 6.6, CMod is arbitration-free, so by Lemma 6.4,

this implies that CMod is weaker than CC. Thanks to Lemma 7.11, any implementation of CC also
ensures CMod.

Lemma D.1 ((1) =⇒ (2)). Let OpSpec be a basic operation specification. There exists an available
(CC,OpSpec)-implementation.

Proof. The main difference in the construction w.r.t. the implementation shown in Lemma 6.6

corresponds to the transition function, Δi. More specifically, the main and only change arise in

Equation (51), which is substituted by Equation (58).

𝑀𝑡 (𝑒) = [𝑥 ↦→ rspec(𝑒) (𝑥, 𝐸𝑥𝑡 (𝑒))]𝑥∈Objs
𝐸𝑥𝑡 (𝑒) =

{
𝑒′

���� 𝑒′ ∈ Events ∩ 𝑡 ∧ 𝑒′ writes 𝑥 in exec(𝑡) ∧
(rep(𝑒′) = rep(𝑒) ∨ rec𝑡 (𝑒′, 𝑒))

}
ar𝑡𝑒 = ar↾𝐸𝑥

𝑡 (𝑒)×𝐸𝑥
𝑡 (𝑒)

(58)

Is immediate to show that 𝐼𝐸 is a storage implementation. Showing that 𝐼𝐸 is an available

Spec-implementation is done as in Lemma 6.6. Observe that Lemmas C.2 and C.3 apply to this

implementation; so (𝑆i, 𝐴i, 𝑠
i
0
,Δi) is an available implementation. In Lemma D.2 we show that indeed

𝐼𝐸 is an implementation of (CC, Spec), concluding the result.
□

Lemma D.2. The implementation 𝐼𝐸 is an implementation of Spec′ = (CC,OpSpec).

Proof. Let 𝑃𝐸 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp) be a program. We prove by induction on the length of all traces

in T𝑃𝐸 𝐼𝐸 that any trace 𝑡 is valid w.r.t. Spec′. The base case, when 𝑡 contains a single action, is
immediate as such action corresponds to the initial event, which does not read any object. Let us

assume that for any trace 𝑡 ′ ∈ T𝑃𝐸 𝐼𝐸 of at most length 𝑘 , exec(𝑡 ′) is valid w.r.t. Spec′; and let us

show that for any trace 𝑡 of length 𝑘 + 1, exec(𝑡) is also valid w.r.t. Spec′.
Let ℎ = (𝐸, so,wr) and 𝜉 = (ℎ, rb, ar) be respectively the history history(𝑡) and the abstract

execution exec(𝑡). We denote sr to the induced order between send-receive actions with the same

metadata on 𝑡 . For proving that 𝜉 is valid w.r.t. Spec′, we first prove that 𝜉 is indeed an abstract

execution, i.e., 𝜉 satisfies Definition 3.4. In particular, by the construction of (𝑆i, 𝐴i, 𝑠
i
0
,Δi) (compared

with that of Lemma C.1), it suffices showing that wr ∪ so ⊆ rb.
By definition of rb, so ⊆ rb, so we focus on proving that wr ⊆ rb. Let 𝑤, 𝑟 be events and 𝑥 be

an object s.t. (𝑤, 𝑟) ∈ wr𝑥 . In such case, there is a pair of actions 𝑎𝑟 , 𝑎𝑤 s.t. 𝑟 ∈ 𝑎𝑟 , 𝑤 ∈ 𝑎𝑤 and

𝑤 ∈ wr-Set(𝑎𝑟) (𝑥). Hence, 𝑤 ∈ rspec(𝑟) (𝑥, 𝐸𝑥𝑡 (𝑟)). We deduce then that rec𝑡 (𝑤, 𝑟) must hold;

which implies that there exists a send action 𝑠 and a receive action 𝑣 s.t. rb-Set(𝑠) = rb-Set(𝑣)
and𝑤 <𝑡 𝑠 <𝑡 𝑣 <𝑡 𝑟 . By sendAllData predicate,𝑤 ∈ rb-Set(𝑠); so by minRcv,𝑤 ∈ rb-Set(𝑣). By
the induced abstract execution definition, (𝑤, 𝑟) ∈ rb.
Finally, we show that 𝜉 is valid w.r.t. Spec′. By Definition 7.8, it suffices to show that for every

event 𝑟 and object 𝑥 , wr−1𝑥 (𝑟) = rspec(𝑟) (𝑥, ctxt𝑥 (𝑟, [𝜉, CC])). Let 𝑟 be a read event, 𝑥 be an object

and 𝑝 = prefix(𝑡, 𝑟). We know by Equation (58) that wr−1𝑥 (𝑟) = rspec(𝑟) (𝑥, 𝐸𝑥𝑝 (𝑟)). Observe that by
Equation (58) and rb’s definition, 𝐸𝑥𝑝 (𝑟) coincides with ctxt𝑥 (𝑟, [𝑡, CC]). Thus, so we conclude that

wr−1𝑥 (𝑟) = rspec(𝑟) (𝑥, ctxt𝑥 (𝑟, [𝑡, CC])). □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:57

D.2 Availability Implies Arbitration-Freeness
The proof of this result mimics that of Lemma 6.7. We prove the contrapositive: if CMod is not

arbitration-free, then no available Spec-implementation exists. Indeed, if CMod is not arbitration-

free, every normal form CMod′ of CMod contains a simple visibility formula involving ar, and such
formula precludes the existence of an available (CMod,OpSpec)-implementation (see Lemma 8.2).

Lemma 8.2. Let Spec = (CMod,OpSpec) be a storage specification. Assume that CMod contains a
simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some 𝑖, 0 ≤ 𝑖 ≤ len(v),
Relv𝑖 = ar. Then, there is no available (CMod,OpSpec)-implementation.

Proof. We assume by contradiction that there is an available implementation 𝐼𝐸 of Spec but
CMod contains a visibility formula 𝑣 non-vacuous w.r.t. OpSpec s.t. for some 𝑖, 0 ≤ 𝑖 ≤ len(𝑣),
Relv𝑖 = ar. We use the latter fact to construct a specific program, which by the assumption, admits a

trace (in the composition with this implementation) that contains no receive action. We show that

any abstract execution induced by this trace, which is admissible by any available implementation

of Spec, is not valid w.r.t. Spec. This contradicts the hypothesis.
The program 𝑃 we construct generalizes the litmus program presented in Figure 1. 𝑃 uses two

replicas 𝑟0, 𝑟1, two distinguished objects 𝑥0, 𝑥1 and a collection of events 𝑒
𝑥𝑙
𝑖
, 0 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1}.

The events are used to “encode” two instances of 𝑣𝑥0 and 𝑣𝑥1 .

Let 𝑑𝑣 be the largest index 𝑖 s.t. Relv𝑖 = ar (last occurrence of ar). Then, 𝑣 is formed of two parts:

the path of dependencies from 𝜀0 to 𝜀𝑑𝑣 which is not arbitration-free, and the suffix from 𝜀𝑑𝑣 up to

𝜀len(𝑣) , the arbitration-free part.
For ensuring that v𝑥 (𝑒𝑥𝑙

0
, . . . 𝑒

𝑥𝑙
𝑛) holds in an induced abstract execution of a trace without receive

actions, we require that if Relv𝑖 = wr, then 𝑒𝑥𝑙
𝑖−1 is a write event and 𝑒

𝑥𝑙
𝑖

is a read event. For ensuring

that wrConsv𝑥 (𝑒0, . . . 𝑒len(𝑣)) holds in such abstract execution, we consider a distinct object 𝑦𝐸 , also

distinct from 𝑥0, 𝑥1. These objects represents each different conflict in 𝑣 in an explicit manner.

Intuitively, we require that events 𝑒
𝑥𝑙
𝑖

write on object 𝑦𝐸 (resp. 𝑥𝑙) iff 𝜀𝑖 ∈ 𝐸.
More formally, we denote by 𝐸𝑥 ∈ P(𝜀0, . . . 𝑒len(𝑣)) to the set s.t. conflict𝑥 (𝐸𝑥) ∈ 𝑣 . Also, for

every 𝑖, 0 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1}, we denote by 𝑋𝑥𝑙
𝑖

to the set containing objects 𝑦𝐸 (resp. 𝑥
𝑥𝑙
𝑖
) iff

𝐸 ∈ conflictsOf (v, i) (resp. 𝐸𝑥 ∈ conflictsOf (v, i)); where 𝑥𝑥𝑙
𝑖

= 𝑥𝑙 if 𝑖 < 𝑑𝑣 and 𝑥1−𝑙 otherwise. We

denote by 𝑋 to the union of sets 𝑋
𝑥𝑙
𝑖
, 0 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1}.

In the construction, we require that replica 𝑟𝑙 executes events 𝑒
𝑥𝑙
𝑖

if 𝑖 < 𝑑𝑣 and events 𝑒
𝑥1−𝑙
𝑖

otherwise – the replica 𝑟𝑙 executes the non arbitration-free part of 𝑣 for object 𝑥𝑙 and the arbitration-

free suffix of 𝑣 for 𝑥1−𝑙 . We denote by 𝑟
𝑥𝑙
𝑖

to such replica.

More in detail, we construct a set of events, 𝐸𝑖 , histories, ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖), and executions,

𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖), 0 ≤ 𝑖 ≤ len(𝑣) inductively, starting from an initial event init, and incorporating

at each time a pair of new events, 𝑒
𝑥0
𝑖

and 𝑒
𝑥1
𝑖
. We use the notation ℎ−1 and 𝜉−1 to describe the

history and abstract execution containing only init respectively. For simplifying notation, we use

the convention init = 𝑒
𝑥0
−1 = 𝑒

𝑥1
−1.

For the inductive step, we assume that the abstract execution 𝜉𝑖−1 = (ℎ𝑖−1, rb𝑖−1, ar−1) associ-
ated to the history ℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) contains events 𝑒𝑥0−1 . . . 𝑒

𝑥0
𝑖−1, 𝑒

𝑥1
𝑖−1 and is well-defined

(satisfies Definition 3.4) and we construct the history ℎ𝑖 and the abstract execution 𝜉𝑖 .

The construction of 𝜉𝑖 follows the structure of that constructed in Lemma 6.7’s proof, but with

the technical details of that used in Theorem B.9’s proof.

For the inductive step, we assume that the abstract execution 𝜉𝑖−1 = (ℎ𝑖−1, rb𝑖−1, ar−1) associated
to the historyℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) contains events 𝑒𝑥0−1 . . . 𝑒

𝑥0
𝑖−1𝑒

𝑥1
𝑖−1 and is well-defined (satisfies

Definition 3.4) and we construct the history ℎ𝑖 and the abstract execution 𝜉𝑖 .

In the following, let 𝑙 ∈ {0, 1}.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:58 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Like in Theorem B.9, we define a pair of special objects, 𝑥
𝑥𝑙
𝑖

and 𝑜
𝑥𝑙
𝑖
. The purpose of object 𝑥

𝑥𝑙
𝑖

is

control the number of events in 𝜉 that write object 𝑥𝑙 . Equation (59) describes 𝑥
𝑥𝑙
𝑖
; where choice is

a function that deterministically chooses an element from a non-empty set. The object 𝑜
𝑥𝑙
𝑖
is an

object different from objects 𝑥,𝑦𝐸, 𝐸 ∈ P(𝜀0, . . . 𝜀len(𝑣)) and 𝑜𝑥𝑙 ′𝑗
,−1 ≤ 𝑗 < 𝑖, 𝑙 ′ ∈ {0, 1} that we use

for ensuring that if Relv𝑖 = wr, then (𝑒𝑖−1, 𝑒𝑖) ∈ wr. W.l.o.g., we can assume that 𝑜
𝑥0
𝑖

≠ 𝑜
𝑥1
𝑖
.

𝑥
𝑥𝑙
𝑖

=


𝑥
𝑥𝑙
𝑖−1 if 𝑋

𝑥𝑙
𝑖

= ∅
𝑥
𝑥𝑙
𝑖

if 𝑋
𝑥𝑙
𝑖

≠ ∅ and 𝑥
𝑥𝑙
𝑖

∈ 𝑋𝑥𝑙
𝑖

choice (𝑋𝑖) if 𝑋
𝑥𝑙
𝑖

≠ ∅ and 𝑥
𝑥𝑙
𝑖

∉ 𝑋
𝑥𝑙
𝑖

(59)

We select a domain 𝐷
𝑥𝑙
𝑖
, a set of objects𝑊

𝑥𝑙
𝑖
,𝑊

𝑥𝑙
𝑖

⊆ 𝐷
𝑥𝑙
𝑖
that event 𝑒

𝑥𝑙
𝑖

must write, and a set of

objects 𝐶
𝑥𝑙
𝑖

⊆ 𝐷
𝑥𝑙
𝑖

whose value needs to be corrected for events 𝑒
𝑥0
𝑖
, 𝑒

𝑥1
𝑖

in 𝜉𝑖+1 – in the sense of

Definition 7.13. We distinguishing between several cases:

• 𝑖 = 0 or 0 < 𝑖 ≤ len(𝑣) and Relv𝑖 ≠ wr and conflictsOf (v, i) ≠ ∅: In this case, we select 𝑒
𝑥𝑙
𝑖
to

be a write event. If OpSpec only allows single-object atomic read-write events, we define

𝐷
𝑥𝑙
𝑖

= 𝑋
𝑥𝑙
𝑖
; while if not, we consider a domain containing 𝑜

𝑥𝑙
𝑖−1, 𝑜

𝑥𝑙
𝑖
, every object in 𝑋

𝑥𝑙
𝑖

but

no object from 𝑋 \ 𝑋𝑥𝑙
𝑖

nor objects 𝑜
𝑥𝑙 ′
𝑗
, 0 ≤ 𝑗 < len(𝑣), 𝑙 ′ ∈ {0, 1} 𝑗 ≠ 𝑖 − 1, 𝑖 . Observe that by

Proposition B.10, such domain always exist on OpSpec.
If there is an unconditional write event whose domain is𝐷

𝑥𝑙
𝑖
, we define𝑊

𝑥𝑙
𝑖

= 𝐷
𝑥𝑙
𝑖
. Otherwise,

we define𝑊
𝑥𝑙
𝑖

= 𝑋
𝑥𝑙
𝑖

∪ {𝑜𝑥𝑙
𝑖
}.

• 0 < 𝑖 ≤ len(𝑣), Relv𝑖 = wr and conflictsOf (v, i) ≠ ∅: In this case, by Proposition B.11, OpSpec
allows atomic read-write events. IfOpSpec only allows single-object atomic read-write events,

we define 𝐷
𝑥𝑙
𝑖

= 𝑋
𝑥𝑙
𝑖
; while if not, we consider a domain containing 𝑜𝑖−1, 𝑜𝑖 , every object in

𝑋
𝑥𝑙
𝑖

but no object from 𝑋 \ 𝑋𝑥𝑙
𝑖

nor objects 𝑜 𝑗 , 0 ≤ 𝑗 < len(𝑣), 𝑗 ≠ 𝑖 − 1, 𝑖 . Observe that by

Proposition B.10, such domain always exist on OpSpec.
Similarly to the previous case, if there is an unconditional atomic read-write event whose

domain is 𝐷
𝑥𝑙
𝑖
, we define𝑊

𝑥𝑙
𝑖

= 𝐷
𝑥𝑙
𝑖
. Otherwise, we define𝑊

𝑥𝑙
𝑖

= 𝑋
𝑥𝑙
𝑖

∪ {𝑜𝑥𝑙
𝑖
}.

• 0 < 𝑖 ≤ len(𝑣) and conflictsOf (v, i) = ∅: In this case, by Proposition B.11, OpSpec allows

events that do not unconditionally write. If OpSpec allows read events that are not write

events, we select 𝐷
𝑥𝑙
𝑖
to be the domain of any such event and𝑊

𝑥𝑙
𝑖

= ∅. Otherwise, OpSpec
must allow conditional write events; so we select 𝐷

𝑥𝑙
𝑖
to be the domain of any such event,

𝑊
𝑥𝑙
𝑖

= ∅. Observe that in this case, thanks to the assumptions on OpSpec (see Section 7.4),

we can assume without loss of generality that whenever 𝑜
𝑥𝑙
𝑖−1 ∈ 𝐷𝑖−1, 𝑜

𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖

as well;

while otherwise, that 𝑥
𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖
.

Finally we describe the event 𝑒
𝑥𝑙
𝑖

thanks to the sets 𝐷
𝑥𝑙
𝑖

and𝑊
𝑥𝑙
𝑖
. If𝑊

𝑥𝑙
𝑖

= 𝐷
𝑥𝑙
𝑖

and Relv𝑖 = wr, we
select an unconditional atomic read-write event whose domain is 𝐷

𝑥𝑙
𝑖
. If𝑊

𝑥𝑙
𝑖

= 𝐷
𝑥𝑙
𝑖

and Relv𝑖 ≠ wr,
we select an unconditional write event whose domain is 𝐷

𝑥𝑙
𝑖
. If𝑊

𝑥𝑙
𝑖

= ∅ and OpSpec allows read
events that are not write events, we select a read event whose domain is 𝐷

𝑥𝑙
𝑖
. Finally, if that is not

the case, we select a conditional write event 𝑒
𝑥𝑙
𝑖

s.t. obj(𝑒𝑥𝑙
𝑖
) = 𝐷𝑥𝑙

𝑖
and s.t. an execution-corrector

exists for (𝑒𝑥𝑙
𝑖
,𝑊

𝑥𝑙
𝑖
, 𝑥

𝑥𝑙
𝑖
, 𝜉𝑖−1 ⊕ 𝑒𝑥0

𝑖
⊕ 𝑒𝑥1

𝑖
). Such event always exists by the assumptions on operation

specifications (Section 7.4). W.l.o.g. we can assume that 𝑒
𝑥𝑙
𝑖

happens on replica 𝑟
𝑥𝑙
𝑖
.

For concluding the description of ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖) and 𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖), we use an auxiliary

history and abstract execution, ℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) and 𝜉𝑖−1 = (ℎ𝑖−1, rb𝑖−1, ar𝑖−1) respectively. For
specifying wr𝑖−1, we define the context mapping 𝑐𝑖 : Objs → Contexts in the same fashion as in

Theorem B.9:

𝑐
𝑥𝑙
𝑖
(𝑦) = (𝐹𝑥𝑙

𝑖
(𝑦), rb𝑖−1

↾𝐹
𝑥𝑙
𝑖

(𝑦)×𝐹𝑥𝑙
𝑖

(𝑦) , ar
𝑖−1
↾𝐹

𝑥𝑙
𝑖

(𝑦)×𝐹𝑥𝑙
𝑖

(𝑦)) (60)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:59

where 𝐹
𝑥𝑙
𝑖
(𝑦) is the mapping associating each object 𝑦 with the set of events described below:

𝐹
𝑥𝑙
𝑖
(𝑦) = {𝑒 ∈ 𝐸𝑖−1 | wspec(𝑒) (𝑦, [𝜉𝑖−1, CC]) ↓ and (𝑒, 𝑒𝑥1−𝑙

𝑖−1) ∈ (rb𝑖−1)∗ } if 𝑖 = 𝑑𝑣
{𝑒 ∈ 𝐸𝑖−1 | wspec(𝑒) (𝑦, [𝜉𝑖−1, CC]) ↓ and (𝑒, 𝑒𝑥𝑙

𝑖−1) ∈ (rb𝑖−1)∗ } otherwise

Then, we define 𝜉𝑖−1 as the abstract execution of the history ℎ𝑖−1 = (𝐸𝑖−1, so𝑖−1,wr𝑖−1) obtained by

appending 𝑒
𝑥0
𝑖
, 𝑒

𝑥1
𝑖

to ℎ𝑖−1 and 𝜉
𝑖
−1 as follows: 𝐸

𝑖
−1 contains 𝐸

𝑖−1
and events 𝑒

𝑥0
𝑖
, 𝑒

𝑥1
𝑖
. First of all, we

require that the relations so𝑖−1,wr
𝑖
−1, rb

𝑖
−1 and ar

𝑖
−1 contain so

𝑖−1
,wr𝑖−1, rb𝑖−1 and ar𝑖−1 respectively.

With respect to events 𝑒
𝑥0
𝑖
, 𝑒

𝑥1
𝑖
, we impose that 𝑒

𝑥𝑙
𝑖

is the maximal event w.r.t. so𝑖−1 among

those on the same replica. Also, 𝑒
𝑥𝑙
𝑖

is maximal w.r.t. wr as we define that for every object 𝑧,

((wr𝑖−1)𝑧)−1 (𝑒
𝑥𝑙
𝑖
) = rspec(𝑒𝑥𝑙

𝑖
) (𝑧, 𝑐𝑥𝑙

𝑖
(𝑧)). We also require that rb𝑖−1 = so𝑖−1. With respect to ar𝑖−1,

we impose that 𝑒
𝑥0
𝑖

succeeds every event in 𝐸𝑖 w.r.t. ar𝑖−1 and that 𝑒
𝑥1
𝑖

is the maximum event w.r.t.

ar in 𝜉𝑖−1.
We use 𝜉𝑖−1 to construct 𝜉𝑖 . If event 𝑒

𝑥𝑙
𝑖
is not a conditional write event, 𝜉𝑖 = 𝜉𝑖−1. Otherwise, if

event 𝑒
𝑥𝑙
𝑖

is a conditional write event, given𝑊
𝑥𝑙
𝑖

and object 𝑥
𝑥𝑙
𝑖
, we select an execution-corrector

for 𝑒
𝑥𝑙
𝑖

w.r.t. (CC,OpSpec) and 𝑎𝑥𝑙
𝑖
. W.l.o.g., we assume that every event mapped by 𝑎

𝑥𝑙
𝑖
happens

on replica 𝑟
𝑥𝑙
𝑖
. Observe that by the choice of sets 𝐷

𝑥𝑙
𝑖

and𝑊
𝑥𝑙
𝑖
, and thanks to the assumptions on

storages (see Section 7.4), such event(s) are always well-defined.

In addition, we denote by 𝐶
𝑥𝑙
𝑖

to the set of objects we need to correct for 𝑒
𝑥𝑙
𝑖
. More specifically,

if 𝑒
𝑥𝑙
𝑖

is a conditional write-read, we denote by 𝐶
𝑥𝑙
𝑖

to the set of objects 𝑦 s.t. 𝑎
𝑥𝑙
𝑖
(𝑦) is defined, i.e.

𝐶
𝑥𝑙
𝑖

= {𝑦 ∈ Objs | 𝑎𝑥𝑙
𝑖
(𝑦) ↓}. In the case 𝑒

𝑥𝑙
𝑖

is not a conditional write-read, we use the convention

𝐶
𝑥𝑙
𝑖

= ∅. The set of events in 𝜉𝑖 is the following: 𝐸𝑖 = 𝐸𝑖−1 ∪ ⋃
𝑙∈{0,1} ({𝑒𝑥𝑙𝑖 }⋃

𝑦∈𝐶𝑖\{𝑜
𝑥𝑙
𝑖−1 }

𝑎
𝑥𝑙
𝑖
(𝑦)).

Observe that by the choice of 𝐶
𝑥𝑙
𝑖
, the set 𝐸𝑖 is well-defined.

From 𝜉𝑖−1, we define 𝜉
𝑖 = 𝜉𝑖

0

seq(𝑎𝑖)
⋎ 𝑒𝑖 as the corrected execution of 𝜉 and 𝑒

𝑥0
𝑖
, 𝑒

𝑥1
𝑖

with events

𝑎
𝑥0
𝑖
, 𝑎

𝑥1
𝑖
. For describing 𝜉𝑖 , we consider < to be a well-founded order over Objs. 𝜉𝑖 satisfies the

following:

• so𝑖 : Let 𝑦 ∈ 𝐶
𝑥𝑙
𝑖
. We require that for every event 𝑒 ∈ 𝐸𝑖−1, (𝑒, 𝑎𝑥𝑙

𝑖
(𝑦)) ∈ so𝑖 iff rep(𝑒) =

𝑟
𝑥𝑙
𝑖
, 0 ≤ 𝑗 < 𝑖 . We also require that (init, 𝑎𝑥𝑙

𝑖
(𝑦)) ∈ so𝑖 and (𝑎𝑥𝑙

𝑖
(𝑦), 𝑒𝑥𝑙

𝑖
) ∈ so𝑖 . Finally, we

require that for every objects 𝑦′ ∈ 𝐶𝑥𝑙
𝑖
, 𝑦′ < 𝑦, (𝑎𝑥𝑙

𝑖
(𝑦′), 𝑎𝑥𝑙

𝑖
(𝑦)) ∈ so𝑖 .

• wr𝑖 : Let 𝑦 be an object in 𝐶
𝑥𝑙
𝑖
. For every object 𝑧, if 𝑧 ∈ 𝐶

𝑥𝑙
𝑖

and 𝑧 < 𝑦, we require

that (wr𝑖𝑧)−1 (𝑎
𝑥𝑙
𝑖
(𝑦)) = rspec(𝑎𝑥𝑙

𝑖
(𝑦)) (𝑧, 𝑐𝑥𝑙

𝑖
(𝑧) ⊕ 𝑎𝑥𝑙

𝑖
(𝑧)); while otherwise, we require that

(wr𝑖𝑧)−1 (𝑎
𝑥𝑙
𝑖
(𝑦)) = rspec(𝑎𝑥𝑙

𝑖
(𝑦)) (𝑧, 𝑐𝑥𝑙

𝑖
(𝑧)). We also require that for every object 𝑧, if

𝑧 ∈ 𝐶𝑥𝑙
𝑖
, then (wr𝑖𝑧)−1 (𝑒

𝑥𝑙
𝑖
) = rspec(𝑒𝑥𝑙

𝑖
) (𝑧, 𝑐𝑥𝑙

𝑖
(𝑧) ⊕ 𝑎𝑥𝑙

𝑖
(𝑧)), while otherwise, (wr𝑖𝑧)−1 (𝑒

𝑥𝑙
𝑖
) =

rspec(𝑒𝑥𝑙
𝑖
) (𝑧, 𝑐𝑥𝑙

𝑖
(𝑧)).

• rb𝑖 : Let 𝑦 ∈ 𝐶𝑥𝑙
𝑖
. We require that for every object 𝑦 ∈ 𝐶𝑥𝑙

𝑖
and event 𝑒 s.t. (𝑒, 𝑎𝑥𝑙

𝑖
(𝑦)) ∈ so𝑖 , s.t.

(𝑒, 𝑎𝑥𝑙
𝑖
(𝑦)) ∈ so𝑖 ∪ wr𝑖 , (𝑒, 𝑎𝑥𝑙

𝑖
(𝑦)) ∈ rb𝑖 .

• ar𝑖 : We impose that for every event 𝑒 ∈ 𝐸𝑖−1, (𝑒, 𝑎𝑥𝑙
𝑖
(𝑦)) ∈ ar𝑖 , 𝑦 ∈ 𝐶𝑥𝑙

𝑖
. We also require that

for every pair of objects𝑦1, 𝑦2 ∈ 𝐶𝑖 s.t.𝑦1, 𝑦2, (𝑎𝑥𝑙𝑖 (𝑦1), 𝑎𝑥𝑙𝑖 (𝑦2)) ∈ ar𝑖 . As a tie-breaker between
events associated to 𝑥0 and 𝑥1, we require that for every pair of events 𝑒 ∈ {𝑒𝑥0

𝑖
, 𝑎

𝑥0
𝑖
(𝑦) | 𝑦 ∈

𝐶
𝑥0
𝑖
}, 𝑒′ ∈ {𝑒𝑥1

𝑖
, 𝑎

𝑥1
𝑖
(𝑦) | 𝑦 ∈ 𝐶𝑥0

𝑖
}, (𝑒, 𝑒′) ∈ ar𝑖 .

We then define ℎ𝑖 = (𝐸𝑖 , so𝑖 ,wr𝑖) and 𝜉𝑖 = (ℎ𝑖 , rb𝑖 , ar𝑖). Observe that by construction of ℎ𝑖 and

𝜉𝑖 , as wr𝑖 ⊆ rb𝑖 = so𝑖 , they satisfy Definitions 3.2 and 3.4 respectively; so they are a history and an

abstract execution respectively. Also, observe that 𝜉𝑖 is the corrected abstract execution of 𝜉𝑖−1 for

events 𝑒
𝑥0
𝑖
, 𝑒

𝑥1
𝑖

with events 𝑎
𝑥0
𝑖
, 𝑎

𝑥1
𝑖
, i.e. 𝜉𝑖 = 𝜉𝑖

1
= 𝜉𝑖

0

seq(𝑎𝑥1
𝑖

)
⋎ 𝑒

𝑥1
𝑖
, where 𝜉𝑖

0
= 𝜉𝑖−1

seq(𝑎𝑥0
𝑖

)
⋎ 𝑒

𝑥0
𝑖
.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:60 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Then, we define Eventsp = 𝐸len(𝑣) as the set our program employs. The set Eventsp induces the
set of traces Tp.

We define the program 𝑃 = (𝑆p, 𝐴p, 𝑠
p
0
,Δp), where initp = init and Δp is the transition function

defined as follows: for every trace 𝑡 ∈ Tp and event 𝑒 ∈ Eventsp, Δp (𝑡, 𝑒) ↓ if and only if 𝑒 ∉ 𝑡 and

every event in Eventsp whose replica coincide with 𝑒 and has smaller identifier than 𝑒 is included

in 𝑡 .

The rest of the proof, which proceeds as follows, essentially combines previous results obtained

while proving Lemma 6.7 and Theorem B.9:

(1) There exists a finite trace 𝑡 of 𝑃 𝐼𝐸 that contains no receive action (Lemma C.5)

(2) The trace 𝑡 induces a history ℎv = (𝐸, so,wr) and an abstract execution 𝜉v = (ℎ, rb, ar) where
rb = so. As 𝐼𝐸 is valid w.r.t. Spec, 𝜉v is valid w.r.t. Spec. Next, we prove that since rb = so,
events in 𝜉v read the latests value w.r.t. so for any object. In particular, we deduce that 𝜉𝑣 is

valid w.r.t. (CC,OpSpec) (Corollary D.5).

(3) Since ar is a total order, either (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar or (𝑒𝑥1

𝑑v−1, 𝑒
𝑥0
𝑑v−1) ∈ ar. W.l.o.g., assume that

(𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar. By Proposition D.6, we deduce that 𝑒

𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(v) , [𝜉v,CMod]). The

proof is explained in Figure 9: if (𝑒𝑥0
𝑑v−1, 𝑒

𝑥1
𝑑v−1) ∈ ar, then all events 𝑒

𝑥0
𝑖

form a path in such

way that v𝑥0 (𝑒
𝑥0
0
, . . . 𝑒

𝑥0
len(v)) holds in 𝜉v. If some event 𝑒

𝑥𝑙
𝑖

is a conditional read-write event,

the predicate conflict𝑥 (𝑒𝑥0
0
, . . . 𝑒

𝑥0
len(v)) holds in 𝜉v thanks to the corrector events 𝐴

𝑥𝑙
𝑖
.

(4) As 𝑒
𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(𝑣) , [𝜉v,CMod]) but (𝑒𝑥0

0
, 𝑒

𝑥0
len(v)) ∉ rb (no message is received), we deduce

in Proposition B.16 that OpSpec is layered w.r.t. ar. By contrapositive, if OpSpec would

be layered w.r.t. rb, as 𝑒𝑥0
0

∈ ctxt𝑥0 (𝑒
𝑥0
len(v) , [𝜉v,CMod]), there would exist an event 𝑒 s.t.

(𝑒𝑥0
0
, 𝑒) ∈ rb and 𝑒 ∈ rspec(𝑒𝑥0len(v)) (𝑥0, [𝜉v,CMod]). However, as rb = so, rep(𝑒𝑥0

0
) = rep(𝑒) =

rep(𝑒𝑥0len(v)) which is false because rep(𝑒𝑥0
0
) = 𝑟0 and rep(𝑒𝑥0len(v)) = 𝑟1.

(5) Since rspec is maximally layered, we can show that the layer bound of rspec is smaller than

or equal to the number of arbitration-free suffixes of v (Proposition B.17). Observe that an

event writes 𝑥0 only if it is init or is an event 𝑒
𝑥𝑙
𝑖

s.t. 𝜀𝑖 ∈ 𝐸𝑥 and 𝑙 = 0. Any such index 𝑖

corresponds to a suffix of v. By causal suffix closure, for any arbitration-free suffix 𝑣 ′ of 𝑣
there is a visibility formula that subsumes 𝑣 ′ in nCModOpSpec. As 𝑑v is the maximum index

for which Relv𝑖 = ar, the number of events writing 𝑥0 in replica 𝑟1 distinct from init coincide
with the number of arbitration-free suffixes of v. Hence, as rspec is layered w.r.t. ar, if its
layer bound would be greater than the number of arbitration-free suffixes, 𝑒

𝑥0
len(v) would

necessarily read 𝑥0 from init (other events writing 𝑥0 are in replica 𝑟0 and 𝑒len(v) only reads

from events in 𝑟1). However, as rspec is maximally-layered and 𝑒
𝑥0
0

succeeds initw.r.t. ar and
rb+, we would conclude that 𝑒

𝑥0
len(v) would also read 𝑥0 from 𝑒

𝑥0
0
. However, this is impossible

as wr ⊆ rb = so but 𝑒
𝑥0
0

is in replica 𝑟0 and 𝑒
𝑥0
len(v) is in replica 𝑟1.

(6) Lastly, we show in Proposition B.18 that if the layer bound of rspec is smaller than or equal to

the number of arbitration-free suffixes of 𝑣 , then 𝑣 is vacuous w.r.t.OpSpec, which contradicts
the fact that v is a visibility formula from the normal form nCModOpSpec. □

Proposition D.3. The abstract execution 𝜉 len(𝑣) described in Lemma 8.2 satisfies that for every
𝑖, 0 ≤ 𝑖 ≤ len(𝑣), 𝑙 ∈ {0, 1}:

(1) For every object 𝑦 ∈ 𝐶𝑥𝑙
𝑖
, the following conditions hold:

(a) For every object 𝑧 ∈ Objs, if 𝑧 ∈ 𝐶𝑥𝑙
𝑖

and 𝑧 < 𝑦, 𝐺 (𝑎𝑥𝑙
𝑖
(𝑦), 𝑧) = 𝐹

𝑥𝑙
𝑖
(𝑧) ∪ {𝑎𝑥𝑙

𝑖
(𝑧)}, while

otherwise, 𝐺 (𝑎𝑥𝑙
𝑖
(𝑦), 𝑧) = 𝐹𝑥𝑙

𝑖
(𝑧).

(b) The execution 𝜉𝑖
𝑙
↾ 𝑦 is valid w.r.t. (CC,OpSpec).

(2) For the event 𝑒𝑥𝑙
𝑖
, the following conditions hold:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:61

(a) For every object 𝑧, if 𝑧 ∈ 𝐶𝑥𝑙
𝑖
,𝐺 (𝑒𝑥𝑙

𝑖
, 𝑧) = 𝐹𝑥𝑙

𝑖
(𝑧)∪{𝑎𝑥𝑙

𝑖
(𝑧)}, while otherwise𝐺 (𝑒𝑥𝑙

𝑖
, 𝑧) = 𝐹𝑥𝑙

𝑖
(𝑧).

(b) The execution 𝜉𝑖
𝑙
is valid w.r.t. (CC,OpSpec).

where ctxt𝑧 (𝑒, [𝜉 len(𝑣) , CC]) = (𝐺 (𝑒, 𝑧), rb↾𝐺 (𝑒,𝑧)×𝐺 (𝑒,𝑧) , ar↾𝐺 (𝑒,𝑧)×𝐺 (𝑒,𝑧)).

Proof. The proof of this result essentially coincides with that of Proposition B.12.

We prove the result by induction. In particular, we show that for every 𝑖,−1 ≤ 𝑖 ≤ len(𝑣) and
object 𝑦, either (0) 𝑖 = −1 or (1) and (2) hold. The base case, 𝑖 = −1, is immediate as (0) holds; so let

us suppose that the result holds for every 𝑗,−1 ≤ 𝑗 < 𝑖 , and let us prove it for 𝑖 .

For proving the inductive step, we first prove (1) for 𝑙 = 0, then (2) for 𝑙 = 0, and then (1) and (2)

for 𝑙 = 1. As both (1) and (2) have an identical proof (observe that the role of object 𝑦 in the former

is just to declare that event 𝑎
𝑥𝑙
𝑖
(𝑦) is well-defined and the role of 𝑙 is to determine which session

must be proven first), we present only the proof of (1) for 𝑙 = 0.

We show (1) by transfinite induction. Let 𝛼 be an ordinal of cardinality |Objs|. For every 𝑘, 0 ≤
𝑘 ≤ 𝛼 , we denote by 𝑉𝑘 to the set containing the first 𝑘 elements in Objs according to <. We show

that (1) holds for every 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑥0
𝑖
.

The base, 𝑉0 is immediate as 𝑉0 = ∅. We thus focus on the successor case (i.e., showing that if (1)

holds for every object 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑥0
𝑖

it also holds for 𝑉𝑘+1), as the limit case is immediate: if 𝑘 is a

limit ordinal, 𝑉𝑘 =
⋃

𝑖,𝑖<𝑘 𝑉𝑖 ; so (1) immediately holds. For showing that (1) holds for every object

𝑦 ∈ 𝑉𝑘+1 ∩𝐶𝑥0
𝑖
, as by induction hypothesis it holds for every object 𝑦 ∈ 𝑉𝑘 ∩𝐶𝑥0

𝑖
, it suffices to show

it for the only object 𝑦 ∈ 𝑉𝑘+1 \𝑉𝑖 . W.l.o.g., we can assume that 𝑦 ∈ 𝐶𝑥0
𝑖
; as otherwise the result is

immediate.

We first prove (1a) and then we show (1b). Let 𝑧 ∈ Objs be an object. Two cases arise: 𝑧 ∈
𝐶𝑖 , 𝑧 < 𝑦 or not. Both cases are identical, so we present the former, i.e., if 𝑧 ∈ 𝐶𝑥0

𝑖
, 𝑧 < 𝑦, then

𝐹
𝑥0
𝑖
(𝑧) ∪ {𝑎𝑥0

𝑖
(𝑧)} = 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧).

For proving that 𝐹
𝑥0
𝑖
(𝑧)∪{𝑎𝑥0

𝑖
(𝑧)} ⊆ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧), we distinguish whether 𝑖 = 𝑑𝑣 or not. However,

the proof essentially coincides in both cases, so we present the case 𝑖 = 𝑑𝑣 . We split the proof in

two blocks: showing that 𝐹
𝑥0
𝑖
(𝑧) ⊆ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧) and showing that 𝑎

𝑥0
𝑖
(𝑧) ∈ 𝐺 (𝑎𝑖 (𝑦), 𝑧).

For showing that 𝐹
𝑥0
𝑖
(𝑧) ⊆ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧), let 𝑒 be an event in 𝐹

𝑥0
𝑖
(𝑧). In such case, 𝑒 ∈ 𝐸𝑖−1,

wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ and (𝑒, 𝑒𝑥1
𝑖−1) ∈ (rb𝑖)∗. By the construction of 𝜉 , it is easy to see that any

such event belongs to 𝐸𝑖 , wspec(𝑒) (𝑧, [𝜉, CC]) ↓ and (𝑒, 𝑒𝑥1
𝑖−1) ∈ (rblen(𝑣))∗. As 𝑖 = 𝑑𝑣 , we deduce

that (𝑒𝑥1
𝑖−1, 𝑎

𝑥0
𝑖
(𝑦)) ∈ rb𝑖 ⊆ rblen(𝑣) . Hence, (𝑒, 𝑎𝑥0

𝑖
(𝑦)) ∈ (rblen(𝑣))+; so 𝑒 ∈ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧). This show

that 𝐹
𝑥0
𝑖
(𝑧) ⊆ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧).

For showing that 𝑎
𝑥0
𝑖
(𝑧) ∈ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧), we observe that 𝜉𝑖

0
= 𝜉𝑖−1

𝑎
𝑥
0

𝑖

⋎ 𝑒
𝑥0
𝑖
. We note that

as 𝑧 < 𝑦, by induction hypothesis (1b), 𝜉𝑖
0
↾ 𝑧 is valid w.r.t. (CC,OpSpec). Thus, by Prop-

erty 1 of Definition 7.13, wspec(𝑎𝑖 (𝑧)) (𝑧, [𝜉𝑖0, CC]) ↓. Hence, wspec(𝑎𝑥0
𝑖
(𝑧)) (𝑧, [𝜉𝑖 , CC]) ↓ and

wspec(𝑎𝑥0
𝑖
(𝑧)) (𝑧, [𝜉 len(𝑣) , CC]) ↓. As 𝑧 < 𝑦, (𝑎𝑥0

𝑖
(𝑧), 𝑎𝑥0

𝑖
(𝑦)) ∈ so𝑖 ⊆ solen(𝑣) ; so we conclude that

𝑎
𝑥0
𝑖
(𝑧) ∈ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧).

We conclude the proof of the inductive step of (1a) by showing the converse i.e. 𝐹
𝑥0
𝑖
(𝑧) ∪

{𝑎𝑥0
𝑖
(𝑧)} ⊇ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧). Let 𝑒 ∈ 𝐺 (𝑎𝑥0

𝑖
(𝑦), 𝑧). First of all, by the definition of Causal visibility

formula (see Figure 4b), 𝑒 ∈ 𝐺 (𝑎𝑥0
𝑖
(𝑦), 𝑧) iff wspec(𝑒) (𝑧, [𝜉, CC]) ↓ and (𝑒, 𝑎𝑥0

𝑖
(𝑦)) ∈ (rblen(𝑣))+.

Observe that if (𝑒, 𝑎𝑥0
𝑖
(𝑦)) ∈ (rblen(𝑣))+, by construction of 𝜉 len(𝑣) , such event must belong to 𝐸𝑖 ,

wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ and (𝑒, 𝑎𝑖 (𝑦)) ∈ (rb𝑖)+. We prove that if 𝑒 ∈ 𝐸𝑖−1 then 𝑒 ∈ 𝐹
𝑥0
𝑖
(𝑧), while

otherwise, if 𝑒 ∈ 𝐸𝑖 \ 𝐸𝑖−1, then 𝑒 = 𝑎𝑥0
𝑖
(𝑧).

If 𝑒 ∈ 𝐸𝑖−1, as wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓, wspec(𝑒) (𝑧, [𝜉𝑖−1, CC]) ↓. Also, as 𝑖 = 𝑑𝑣 and (𝑒, 𝑎𝑥0
𝑖
(𝑦)) ∈

(rb𝑖)+, we deduce that (𝑒, 𝑒𝑥1
𝑖−1) ∈ (rb𝑖−1)∗. In other words, 𝑒 ∈ 𝐹𝑥0

𝑖
(𝑧).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

41:62 Hagit Attiya, Constantin Enea, and Enrique Román-Calvo

Otherwise, if 𝑒 ∈ 𝐸𝑖 \ 𝐸𝑖−1, we note that by construction of 𝜉 len(𝑣) , the only events in 𝐸𝑖 \ 𝐸𝑖−1 s.t.

(𝑒, 𝑎𝑥0
𝑖
(𝑦)) ∈ (rb𝑖)+ are events 𝑎𝑥0

𝑖
(𝑤),𝑤 ∈ 𝐶𝑖 ,𝑤 < 𝑦. As 𝜉𝑖

0
= 𝜉𝑖−1

seq(𝑎𝑥0
𝑖

)
⋎ 𝑒

𝑥0
𝑖

and 𝑧 < 𝑦, 𝜉𝑖
0
↾ 𝑧 is valid

w.r.t. (CC,OpSpec). Hence, wspec(𝑒) (𝑧, [𝜉𝑖 , CC]) ↓ iff wspec(𝑒) (𝑧, [𝜉𝑖
0
, CC]) ↓. Thus, by Property 1

of Definition 7.13 we conclude that 𝑒 = 𝑎
𝑥0
𝑖
(𝑧).

For concluding the inductive step, we show that (1b) holds. This is immediate by the definition

of wr𝑖 : for every event 𝑒 ∈ 𝜉𝑖 ↾ 𝑦, by induction hypothesis (1a) or (2a) – depending on whether

𝑒 = 𝑒
𝑥𝑙 ′
𝑗

or 𝑎
𝑥𝑙 ′
𝑗
(𝑤), where 0 ≤ 𝑗 ≤ 𝑖,𝑤 ∈ 𝐶𝑖 , 𝑙

′ ∈ {0, 1} – (wr𝑖)−1𝑧 (𝑒) = rspec(𝑒) (CC, [𝜉 𝑗
𝑙 ′ ↾ 𝑦, 𝑧]) =

rspec(𝑒) (CC, [𝜉𝑖
𝑙
↾ 𝑦, 𝑧]). Thus, 𝜉𝑖 ↾ 𝑦 is valid w.r.t. (CC,OpSpec). □

A consequence of Proposition D.3 is the following result.

Corollary D.4. The abstract execution 𝜉 described in Lemma 8.2 is valid w.r.t. (CC,OpSpec).

Corollary D.5 is an immediate result from Corollary D.4, obtained by simply observing that

rblen(𝑣) = solen(𝑣) = so = rb.

Corollary D.5. The abstract execution 𝜉𝑣 described in Lemma 8.2 is valid w.r.t. (CC,OpSpec).

Proposition D.6. For every 𝑙 ∈ {0, 1}, if (𝑒𝑥𝑙
𝑑𝑣−1, 𝑒

𝑥1−𝑙
𝑑𝑣−1) ∈ ar, then the predicate 𝑣𝑥0 (𝑒

𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
len(𝑣))

holds in the abstract execution 𝜉 = (ℎ, rb, ar) described in Theorem B.9.

Proof. The proof of this result essentially coincides with that of Proposition B.14.

The proof is a simple consequence of 𝜉 len(𝑣) ’s construction. To show that 𝑣𝑥0 (𝑒
𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
len(𝑣))

holds in 𝜉 , we first show that for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ Relv𝑖 and to then prove that

wrConsv𝑥 (𝑒
𝑥𝑙
0
, . . . 𝑒

𝑥𝑙
len(𝑣)) holds in 𝜉 .

We prove that for every 𝑖, 1 ≤ 𝑖 ≤ len(𝑣), (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ Relv𝑖 . Four cases arise depending on Relv𝑖 .

• Relv𝑖 = so: In this case, by construction of events 𝑒
𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
, we know that 𝑟

𝑥𝑙
𝑖

= 𝑟
𝑥𝑙
𝑖−1. Hence,

(𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ so𝑖 ⊆ so.

• Relv𝑖 = wr: In this case, we first show that there is an object𝑦 ∈ 𝐷𝑥𝑙
𝑖
∩𝑊 𝑥𝑙

𝑖−1\𝐶
𝑥𝑙
𝑖
, and then show

that (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ wr𝑦 . For showing the first part, we distinguish between cases depending on

whether 𝑜
𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖

or not.

– 𝑜𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖
: In this sub-case, we show that 𝑦 = 𝑜

𝑥𝑙
𝑖−1. On one hand, if conflictsOf (v, i) = ∅,

by the choice of event 𝑒
𝑥𝑙
𝑖
, 𝑜

𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖−1 \𝐶

𝑥𝑙
𝑖
. On the other hand, if conflictsOf (v, i) ≠ ∅, as

𝑜
𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖
, we deduce that OpSpec allows multi-object read-write events. Observe that as

𝑣 is conflict-maximal, conflictsOf (v, i − 1) ≠ ∅. Hence, as OpSpec allows multi-object read-

write events, we deduce that 𝑜
𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖−1 \𝐶

𝑥𝑙
𝑖
. In both cases, as conflictsOf (v, i − 1) ≠ ∅

and 𝑜
𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖−1, by the choice of𝑊

𝑥𝑙
𝑖−1, we conclude that 𝑜

𝑥𝑙
𝑖−1 ∈𝑊

𝑥𝑙
𝑖−1.

– 𝑜𝑥𝑙
𝑖−1 ∉ 𝐷

𝑥𝑙
𝑖
: In this case, we show that𝑦 = 𝑥

𝑥𝑙
𝑖
. On one hand, if conflictsOf (v, i) = ∅,𝑋𝑥𝑙

𝑖
= ∅;

so by the choice of 𝑥
𝑥𝑙
𝑖

(see Equation (59)), 𝑥
𝑥𝑙
𝑖

= 𝑥
𝑥𝑙
𝑖−1. By the choice of 𝐷

𝑥𝑙
𝑖
, 𝑥

𝑥𝑙
𝑖−1 ∈ 𝐷

𝑥𝑙
𝑖
\𝐶𝑥𝑙

𝑖
.

Moreover, as 𝑣 is conflict-maximal, conflictsOf (v, i − 1) ≠ ∅; so 𝑥𝑥𝑙
𝑖−1 ∈ 𝑋

𝑥𝑙
𝑖−1. By the choice

of event 𝑒
𝑥𝑙
𝑖−1, 𝑋

𝑥𝑙
𝑖−1 ⊆𝑊

𝑥𝑙
𝑖−1. Altogether, we conclude that 𝑥

𝑥𝑙
𝑖

∈𝑊 𝑥𝑙
𝑖−1.

On the other hand, if conflictsOf (v, i) ≠ ∅, we note that 𝑥𝑥𝑙
𝑖

∈ 𝐷𝑥𝑙
𝑖
\𝐶𝑥𝑙

𝑖
. As 𝑜

𝑥𝑙
𝑖−1 ∉ 𝐷

𝑥𝑙
𝑖
, we

deduce that OpSpec only allows single-object read-write events. Thus, 𝐷
𝑥𝑙
𝑖

= {𝑥𝑥𝑙
𝑖
}. As 𝑣 is

conflict-maximal, we deduce that 𝑋
𝑥𝑙
𝑖

⊆ 𝑋
𝑥𝑙
𝑖−1. As by the choice of 𝑒

𝑥𝑙
𝑖−1, 𝑋

𝑥𝑙
𝑖−1 ⊆ 𝑊 𝑥𝑙

𝑖−1, we
conclude that 𝑥

𝑥𝑙
𝑖

∈𝑊 𝑥𝑙
𝑖−1.

We prove now that (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ wr𝑦 . First, we show that 𝑒

𝑥𝑙
𝑖−1 writes 𝑦 in 𝜉 . On one hand, if

𝑒
𝑥𝑙
𝑖−1 is an unconditional write event, wspec(𝑒𝑥𝑙

𝑖−1) (𝑦, 𝑐
𝑥𝑙
𝑖
(𝑦)) ↓. On the other hand, if 𝑒

𝑥𝑙
𝑖−1 is

a conditional write event, as 𝜉 is valid w.r.t. (CC,OpSpec) (Corollary D.5) and 𝑦 ∈𝑊 𝑥𝑙
𝑖
, by

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

Arbitration-Free Consistency Is Available (and Vice Versa) 41:63

Property 2 of Definition 7.13, we deduce that wspec(𝑒𝑥𝑙
𝑖−1) (𝑦, 𝑐

𝑥𝑙
𝑖
(𝑦)) ↓. Then, as Relv𝑖 = wr,

𝑖 ≠ 𝑑𝑣 , so 𝑒
𝑥𝑙
𝑖−1 ∈ 𝐹

𝑥𝑙
𝑖
(𝑦). Observe that by construction of 𝜉 , 𝑒

𝑥𝑙
𝑖−1 is the 𝑠𝑜-maximum event in

𝑐
𝑥𝑙
𝑖
(𝑦). As every event in 𝐹

𝑥𝑙
𝑖
(𝑦) is so-related, we deduce that 𝑒𝑥𝑙

𝑖−1 is the ar-maximum event

in 𝐹
𝑥𝑙
𝑖
(𝑦). We note that as 𝑦 ∉ 𝐶

𝑥𝑙
𝑖
, by Proposition D.3, 𝐹

𝑥𝑙
𝑖
(𝑦) = 𝐺 (𝑒𝑥𝑙

𝑖
, 𝑦). Altogether, 𝑒𝑥𝑙

𝑖−1 is

the ar-maximum event in ctxt𝑦 (𝑒𝑥𝑙𝑖 , [𝜉 len(𝑣) , CC]). As rblen(𝑣) = rb, we conclude that 𝑒𝑥𝑙
𝑖−1 is

the ar-maximum event in ctxt𝑦 (𝑒𝑥𝑙𝑖 , [𝜉, CC]). As rspec is maximally layered, we deduce that

𝑒
𝑥𝑙
𝑖−1 ∈ rspec(𝑒𝑥𝑙

𝑖
) (𝑦, [𝜉, CC]). Finally, as 𝜉 is valid w.r.t. CC (Corollary D.5), we conclude that

(𝑒𝑥𝑙
𝑖−1, 𝑒𝑖) ∈ wr𝑦 .

• Relv𝑖 = rb: In this case, 𝑖 ≠ 𝑑𝑣 . Then, rb = so and (𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ so, we conclude that (𝑒𝑥𝑙

𝑖−1, 𝑒
𝑥𝑙
𝑖
) ∈

rb.
• Relv𝑖 = ar: On one hand, if 𝑖 = 𝑑𝑣 , by hypothesis, (𝑒𝑥𝑙

𝑖−1, 𝑒
𝑥𝑙
𝑖
) ∈ ar. On the other hand, if 𝑖 ≠ 𝑑𝑣 ,

(𝑒𝑥𝑙
𝑖−1, 𝑒

𝑥𝑙
𝑖
) ∈ so. Thus, (𝑒𝑥𝑙

𝑖−1, 𝑒
𝑥𝑙
𝑖
) ∈ ar.

For showing that show that wrConsv𝑥 (𝑒0, . . . 𝑒len(𝑣)), we show that for every 𝑖, 0 ≤ 𝑖 ≤ len(𝑣) and
every set 𝐸 ∈ conflictsOf (v, i), the event 𝑒𝑥𝑙

𝑖
writes on object 𝑦𝐸

9
. If 𝑒

𝑥𝑙
𝑖

is an unconditional write,

by the choice of 𝑒
𝑥𝑙
𝑖
, it writes on every object in 𝐷

𝑥𝑙
𝑖
. As 𝑦𝐸 ∈ 𝐷𝑥𝑙

𝑖
, we conclude that 𝑒

𝑥𝑙
𝑖

writes on

𝑦𝐸 . Otherwise, if 𝑒
𝑥𝑙
𝑖

is a conditional write, we observe that 𝑦𝐸 ∈𝑊 𝑥𝑙
𝑖
. Hence, as 𝜉𝑖

0
= 𝜉𝑖−1

seq(𝑎𝑥0
𝑖

)
⋎ 𝑒

𝑥0
𝑖

and 𝜉𝑖
0
is valid w.r.t. (CC,OpSpec) (resp. 𝜉𝑖

1
= 𝜉𝑖

0

seq(𝑎𝑥1
𝑖

)
⋎ 𝑒

𝑥1
𝑖

and 𝜉𝑖
1
is valid w.r.t. (CC,OpSpec))

(Proposition D.3), we deduce using Property 2 of Definition 7.13 that wspec(𝑒𝑥𝑙
𝑖
) (𝑦𝐸, [𝜉𝑖 , CC]) ↓. By

construction of 𝜉 , we conclude that wspec(𝑒𝑥𝑙
𝑖
) (𝑦𝐸, [𝜉, CC]) ↓. □

Received 2025-07-10; accepted 2025-11-06

9
For simplifying the proof, we abuse of notation and say that 𝑦𝐸 = 𝑥𝑙 if 𝐸 = 𝐸𝑥 . Observe that 𝑣 is conflict-maximal, either

conflict𝑥 (𝐸𝑥) or conflict (𝐸𝑥) do not belong to 𝑣.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Abstracting Storage Executions
	3.1 Histories
	3.2 Abstract Executions

	4 Basic Storage Specifications
	4.1 Basic Consistency Models
	4.2 Basic Operation Specifications
	4.3 Validity w.r.t. Basic Storage Specifications

	5 Programs and Storage Implementations
	5.1 Labeled Transition Systems
	5.2 Programs and Storage Implementations
	5.3 Availability and Validity of a Storage Implementation

	6 The Basic Arbitration-Free Consistency Theorem
	6.1 Arbitration-Freeness Implies Availability
	6.2 Availability Implies Arbitration-Freeness

	7 Generalized Distributed Storage Specifications
	7.1 Consistency Models
	7.2 Operation Specifications
	7.3 Validity w.r.t. Storage Specifications
	7.4 Assumptions About Operation Specifications

	8 The Arbitration-Free Consistency Theorem
	9 Related Work and Discussion
	References
	A Examples of Operation Specifications
	A.1 Key-Value Store with Fetch-And-Add and Compare-And-Swap Operations
	A.2 Key-Value Multi-Value Store
	A.3 Distributed Counter
	A.4 Insert/Delete Last-Write-Wins
	A.5 Non-Transactional SQL with Last-Writer-Wins Store
	A.6 Transactional SQL Multi-Value Store

	B Normal Form of a Consistency Model w.r.t. an Operation Specification
	B.1 Existence of a Normal Form of a Consistency Model
	B.2 Arbitration-Free Well-Formedness

	C Proof of the Basic Arbitration-Free Consistency Theorem (th:characterization-cons-available-lww)
	C.1 Arbitration-Freeness Implies AvailabilityProof of Lemma 6.6
	C.2 Availability Implies Arbitration-FreenessProof of Lemma 6.7

	D Proof of the Arbitration-Free Consistency Theorem (th:characterization-cons-available)
	D.1 Arbitration-Freeness Implies AvailabilityProof of Lemma D.1
	D.2 Availability Implies Arbitration-FreenessProof of Lemma 8.2

