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The fundamental tension between availability and consistency shapes the design of distributed storage systems.
Classical results capture extreme points of this trade-off: the CAP theorem shows that strong models like
linearizability preclude availability under partitions, while weak models like causal consistency remain
implementable without coordination. These theorems apply to simple read-write interfaces, leaving open
a precise explanation of the combinations of object semantics and consistency models that admit available
implementations.

This paper develops a general semantic framework in which storage specifications combine operation
semantics and consistency models. The framework encompasses a broad range of objects (key-value stores,
counters, sets, CRDTs, and SQL databases) and consistency models (from causal consistency and sequential
consistency to snapshot isolation and bounded staleness).

Within this framework, we prove the Arbitration-Free Consistency (AFC) theorem, showing that an object
specification within a consistency model admits an available implementation if and only if it is arbitration-free,
that is, it does not require a total arbitration order to resolve visibility or read dependencies.

The AFC theorem unifies and generalizes previous results, revealing arbitration-freedom as the fundamental
property that delineates coordination-free consistency from inherently synchronized behavior.
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1 Introduction

Distributed storage systems enable reliable access to objects by replicating them across a wide-area
network. Replication is essential for tolerating faults in the system (e.g., machines that crash,
network partitions) and for decreasing latency. In such systems, it is crucial to maintain a trade-off
between availability (ensuring prompt access to data) and preserving consistency, even in the
presence of communication delays. The CAP theorem [13, 18] shows that a key-value store cannot
provide strong Consistency (atomicity) while maintaining Availability and tolerating network
Partitions at the same time. PACELC [1, 19] refines CAP by adding the case of a connected network
where strong consistency cannot be achieved with low latency.
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Many modern storage systems sacrifice strong consistency for availability (or low latency) and
ensure weaker notions of consistency. There is plethora of weak consistency models [14] (or
isolation levels [3] in the context of transactions) that correspond to different trade-offs with respect
to availability. Other modern storage systems relax the semantics of the objects they support, e.g.,
multi-value registers, where a get arbitrarily returns a previously stored value.

Given that the guarantees of a storage system are captured through the subtle combination of its
consistency model and its object semantics, a natural question to consider is:

What class of consistency models support available implementations of which objects in
the presence of network partitions?

Previous results provided only partial answers to this question. The aforementioned CAP theorem
only shows a negative result that an Atomic (Linearizable) Key-Value Store is not included in this
class. Attiya et al. [7] identify a consistency model, called Observable Causal Consistency (OCC),
that is not included in this class; but only for particular objects, Multi-Value Registers. We remark
that Causal Consistency, which is strictly weaker than both of them, is in the class.

The goal of this paper is to give a precise answer for the question raised above. To do so, we
rely on a very expressive framework for defining consistency models and object semantics that
builds on previous work [14]. Using this framework, we give a tight characterization of models and
objects that can be expressed within this framework and that support available implementations.
Before explaining our characterization, we outline our framework.

A framework for defining storage specifications. A storage system is composed of a collection of
objects that can be read or modified using a set of operations (the API of the storage). Specifications
are expressed in terms of an abstract model of storage executions, which is defined as a set of
binary relations among events—each event corresponding to an invocation of an operation on an
object. These relations capture typical control-flow dependencies—such as invocations occurring at
the same replica-data-flow dependencies-where certain updates affect the result of a query-and
a total order used as a "tie-breaker” to fix an order between concurrent invocations. The latter is
called arbitration order and it has an important role in our main result.

In a distributed storage system, implementations typically rely on communication protocols to
share the effects of invocations among all replicas. They also use specific algorithms to merge the
effects received from other replicas into the local replica’s state. As a result, each invocation can be
viewed as executing within a specific context—that is, the set of prior operations, including those
received from remote replicas.

A storage specification defines the expected behavior of the system. It consists of two parts:

e a consistency model, restricting the possible contexts in which each invocation may execute.
e an operation specification, describing the allowable effects of an invocation, given its context.

A consistency model consists of a set of visibility formulas saying when an invocation belongs
to the context of another invocation. This “being in the context of” binary relation is defined
via combinations of the binary relations mentioned above (by standard composition, union, and
transitive closure). For instance, a visibility formula may state that all prior invocations at the same
replica should be included in the context. An operation specification consists of a set of functions
that characterize the read and write behavior of an invocation, in particular, the value written by
writes. Note that this value is not always fixed since we allow operations that read and write at the
same time, e.g., Compare-and-Swap which writes a given object only if the old value equals some
other value given as input. We also allow SQL transactions whose effects are even more complex.

We show that our framework covers many possible storage specifications, including Last-Writer-
Wins and Multi-Value Key-Value stores, Key-Value stores with Compare-and-Swap operations,
Key-Value stores with counters, as well as transactional and non-transactional SQL stores, and many
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PUT(x, 1); || PUT(y, 1);

FAA(Y, 2);
FAA(x, 4);

PUT(y,2); PUT(x, K); || PUT(y, K); FAA(x, 1);
b = GET(x); a = GET(x);|| b = GET(y); FAA(x, 1);|| FAA(x, 2); FAA(y, 3);

PUT (x,1);
a = GET(y);

(a) Sequential Consistency (b) Bounded Staleness and (c) Sequential Consistency (d) Prefix Consistency and
and PUT, GET operations. PUT, GET operations. and FAA operations. FAA operations.

Fig. 1. Different litmus programs with two concurrent sessions showing the absence of available implementa-
tions for selected pairs of consistency models and operation specifications.

possible consistency models including Return-Value Consistency, Causal Consistency, Sequential
Consistency, and transactional isolation levels like Snapshot Isolation and Serializability.

The arbitration-free consistency (AFC) theorem. Our main result states roughly, that a storage sys-
tem has an available implementation if and only if the visibility formulas that define its consistency
model exclude any meaningful use of the total arbitration order. Such a consistency model is called
arbitration-free. As in previous works, we consider an implementation to be available if operations
can be answered immediately on every replica (without waiting for messages from other replicas).

The proof of the AFC theorem is quite challenging, one reason being the very expressive and
abstract specification framework that we consider. Proving that there exist available implementa-
tions for arbitration-free consistency models is the easier part since arbitration-freeness implies
that the model is weaker than causal consistency, and the latter supports available implementa-
tions [9, 10, 25, 26]. The opposite direction is much more difficult and is described in two stages.

We first consider a basic case, in which operations read and/or write a single value from/to a
single object. This yields a reasonably simple proof, while still covering consistency models such as
Return-Value Consistency, Causal Consistency, Prefix Consistency and Sequential Consistency, and
objects such as a key-value store, with ordinary put/ get operations or extended with Fetch-and-Add
and Compare-and-Swap operations.

Then, we consider a general class of objects where operations can read and/or write multiple
objects at the same time, and reads may compute their return value from multiple updates. In this
very generic context, we need to introduce some number of restrictions (assumptions) which are
however satisfied by all practical cases that we are aware of (see Section 7). This is to exclude
pathological cases that arise from starting with a very abstract formal model.

To summarize, we provide the first characterization of distributed storage formal specifications
that support available implementations which takes into account both consistency constraints and
the semantics of the implemented objects. At a high level, the key insight behind our result is that
in an asynchronous system, where replicas coordinate only through the exchange of messages, they
can establish at most a causal order between operations. The arbitration order, in contrast, is total: it
compares operations that are concurrent and therefore incomparable under causality. Determining
such a total order would require additional synchronization between replicas, coordination that
cannot be achieved in an always-available manner.

2 Motivating Examples

We illustrate the broad applicability of the AFC theorem through various storage specifications,
each reflecting different trade-offs between consistency and operation semantics. We argue about
the diversity of reasoning required and motivate the need for a unified framework.

As a starting point, we consider a standard key-value store with PUT and GET operations; PUT(x, v)
writes the value v to object (key) x, and GET(x) reads the latest! value of object x. As consistency

1We assume a standard semantics based on the Last-Writer-Wins conflict resolution policy.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.



41:4 Hagit Attiya, Constantin Enea, and Enrique Roman-Calvo

model, we consider the standard Sequential Consistency (SC) whose formalization uses arbitration to
postulate an order in which different operations interleave. By the AFC theorem, the latter implies
that there exists no available implementation that ensures SC. Intuitively, the proof is based on a
litmus program like in Figure 1a. This program contains two concurrent sessions, each executed at
a different replica. Also, x and y are initially 0. An SC available implementation should allow an
execution in which, intuitively, the two replicas operate without exchanging any messages, resulting
in both final get operations returning 0. However, this outcome violates sequential consistency, as
it cannot be produced by any interleaving of the operations—leading to a contradiction.

We remark that this argument proves a version of the CAP theorem that is stronger than the
one proved in [18]. The latter proof relies on the real-time ordering requirement that is embedded
in linearizability — a consistency model stronger than sequential consistency (cf. [21]).

Such a proof can be generalized to the case where PUT / GET operations are replaced for instance,
by ADD / CONTAINS operations on a set, i.e., PUT(x, v) and GET(x) in Figure 1a are replaced by ADD(x)
and CONTAINS(x) (and similarly for operations on y). As in the previous case, an SC available
implementation should allow an execution without exchange of messages, resulting in both final
CONTAINS operations returning false (the set does not contain the element), which is an SC violation.

On the other hand, if we consider a weaker consistency model, a straightforward variation of
the program in Figure la can not be used to prove non-existence of available implementations.
For instance, consider Bounded Staleness [28] a weakening of SC, which requires that each get
operation observes all preceding put operations (on the same object), except possibly the most
recent K — 1, for some fixed value of K. The put operations are still required to execute following
some fixed arbitration order as in SC (see Section 7.1 for a precise definition). This weakening for
K = 2 admits an execution of t he program in Figure 1a where both final get operations return 0
(the get operations may miss the only put in the program). Therefore, this program cannot be used
to show non-existence of available implementations. Instead, one can use the program given in
Figure 1b, which contains K put operations in each session. One can follow now the same strategy
as above and show that an execution without exchange of messages makes both get operations
return 0, and this violates bounded staleness.

If we weaken consistency even further and consider Causal Consistency (CC) [29], then the AFC
theorem will imply existence of available implementations (which is known [9, 10, 25, 26]).

Now, if we change the set of operations and consider a storage system with only Fetch-and-Add
operations (FAA(x, v) returns the old value of x and adds v, atomically), then a proof for non-
existence of SC available implementations can be done using the program in Figure 1c with only
one FAA in each session. An execution without exchange of messages will imply that both FAA
return the initial value of x, and this is a violation of SC.

If we weaken consistency to Prefix Consistency (PC) [16], then the previous program is not
suitable. An execution where both FAA in Figure 1c return the initial value of x satisfies PC (see
section 4.1 for a formal definition). Instead, we need a litmus program like in Figure 1d which
contains two FAAs per session. Here, an execution where all FAAs return an initial value does not
satisfy PC. This program can also be used to show the non-existence of available implementations of
Parallel Snapshot Isolation (PSI) [30] or Conflict-preserving Causal Consistency (CCC), a consistency
model defined using the axioms Conflict and Causal from [11]. As a side remark, note that CCC is
equivalent to CC for the key-value store with PUT and GET operations presented at the beginning,
and therefore, there exists an available implementation for CCC in that case.

While these cases follow a broadly similar proof strategy, each demands distinct proof artifacts
(such as litmus programs) and tailored reasoning. The AFC theorem unifies these diverse arguments
within a common theoretical framework, grounded in a formalization of a wide class of storage
specifications encompassing all the examples above.
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3 Abstracting Storage Executions

We present an abstract model of distributed storage executions that includes the essential compo-
nents needed to define storage specifications. A distributed storage (or simply storage) replicates the
state of a set of objects over two or more nodes called replicas. We use Objs to denote the infinite
set of objects, ranged over x, y, z, and Reps to denote the set of replica identifiers, ranged over r, ry,
ry. Objects are accessed using a set of operations which may write or return values in a set Vals.

An abstract execution records operation invocations along with a set of relations that represent
control-flow dependencies (two invocations executing on the same replica), and the internal
behavior of the storage. The internal behavior includes, broadly, the computation of object states
and the return values of invocations, as well as the communication between replicas. The first
concerns local computation within each replica, while the second pertains to communication
protocols or underlying network assumptions. To distinguish these two aspects, we first introduce
the concept of a history, which records only the data-flow dependencies relevant to characterizing
the local computation. An abstract execution is then defined as an extension of a history, enriched
with additional relations that abstract inter-replica communication.

3.1 Histories

The invocation of an operation on some replica is represented using an event e = (id, r, op, wval, m)
where id is an event identifier, r is a replica identifier, op is an operation name, wval is a (partial)
mapping that associates an object x with a value v that this event writes to x, and m is additional
metadata of the invocation. We use id(e) rep(e), op(e), wval(e), and md(e) to denote the event
identifier, replica identifier, operation, written value mapping and metadata of an event e, respec-
tively. We assume that every event e accesses (reads or writes) a fixed finite set of objects denoted
as obj(e). The set of events is denoted by Events. We assume that Events includes a distinguished
type of initial events that affect every object, representing the initial state of the storage.

Example 3.1. As a running example, we consider a Key-value Store with four types of operations:
PUT(x,v) that writes v to object (key) x, GET(x) that reads object x, FAA(x,v) that reads the value v’
of object x and writes v’ + v, and CAS(x,v,v"), that reads x and writes v’ iff the value read isv. We use
faacas to refer to this storage (from the Fetch-and-Add and Compare-and-Swap operations).

A history contains a finite set of events E ordered by a (partial) session order so that relates events
on the same replica, and a write-read relation wr (also known as read-from) representing data-flow
dependencies between events that update and respectively, read a same object. Histories contain an
initial event, init, that precedes every other event in E w.r.t so. We consider a write-read relation
wry C P(E) X E for every object x € Objs. The inverse of wr, is defined as usual and denoted by
wryl. We use wr : Objs — P(E) X E to denote the mapping associating each object x with wry.

For simplicity, we often abuse the notation and extend wr, and wr to pairs of events: we say that
(w,r) € wry if w € wr!(r), and we say that (w, r) € wr if there exists an object x s.t. (w,r) € wry.

Definition 3.2. A history (E, so, wr) is a finite set of events E along with a strict partial session
order so, and a write-read relation wry C P (E) X E for every x € Objs such that

e E contains a single initial event init, which precedes every other event in E w.r.t. so,

o Ve,e’ € E\ {init}, so orderse and e’ iff rep(e) = rep(e’),

o the inverse of wry is a total function for every x € Objs, and

e so U wr is acyclic (here we use the extension of wr to pairs of events).

Example 3.3. Figure 2 shows two examples of histories of the storage faacas presented in Example 3.1.
For readability, we omit replica identifiers from events. The wr dependencies can be used to explain the
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init init

o) S0
Wy el

(o ) (osean ) (e )

(a) eg reads 0, writes 1; e1 reads 1 and does not write. (b) ey reads 0 and writes 1; e; reads 0 and writes 2.

Fig. 2. Two examples of histories for faacas. Arrows represent so and wr relations. The initial event init
defines the initial state where x is 0. Events ey and e; execute a fetch-and-add and compare-and-swap
respectively, at different replicas.

“local” computation in those invocations as follows: (1) on the left, the CAS should fail (not write to x)
because it reads the value written by the FAA which should be equal to 1 since FAA reads the initial
value, (2) on the right, the CAS should succeed (write to x) because it reads the initial value (the FAA
will concurrently write 1 to x).

We say that the event w is read by the event r if (w, r) € wr. Since we assumed that wr}! is a
total function, we use wr;!(r) to denote the set W such that (W, r) € wr,. We use wr;!(e) = 0 to
indicate that e does not read x (resp. wr;!(e) # 0 to indicate that e reads x).

3.2 Abstract Executions

An abstract execution of a distributed storage is a history with a finite set of events E along
with a relation rb C E X E called receive-before, and a total order ar C E X E called arbitration.
These relations are an abstraction of the internal communication behavior, i.e., the propagation of
operation invocations between different replicas and conflict-resolution policies. The receive-before
relation models information exchange between replicas and intuitively, an event w is received-
before an event e on a replica r if w has been propagated to replica r before executing e. The
arbitration order represents a “last-writer wins” conflict resolution policy between concurrent
events and the order in which events take effect in the storage for “strong” consistency models
such as Sequential Consistency or Serializability. This order may be ignored by weaker consistency
models, where a read is not required to read from the latest update that precedes it in arbitration
order, or by specific types of storage, e.g., CRDTs (see Section 7), where conflict resolution does not
rely on the arbitration order.

Definition 3.4. An abstract execution & = (h,rb, ar) is a history h = (E, so, wr) along with an
asymmetric, irreflexive relation receive-before rb C EXE and a strict total arbitration order ar C EXE,
such that:

(1) propagated updates are not “forgotten” within the same replica: rb = rb; so*?,
(2) events at the same replica or events that are read are necessarily received-before, and ar is
consistent with the receive-before relation: so U wr C rb C ar.

& is called an abstract execution of h.

The conditions above are naturally satisfied by storages where replicas execute in a single process,
values are not produced “out of thin air”, and the arbitration order is implemented using “consistent”
timestamps, i.e. timestamps that do not contradict Lamport’s clocks [23] or causality. This is the
case for implementations where “ties” between concurrent operations are solved based on replica
IDs (assumed to be totally ordered), or when using timestamps from a (partially-)synchronized
clock — which is most often the case in practice.

2The symbol ; denotes the usual composition of relations
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eo €1

7 S N
(Cmen Jeol omstxer

init init

€1 €0
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() == osr02 J (e Jo [ oastx02) )

(a) Abstract execution of the history in Figure 2a.  (b) Two abstract executions of the history in Figure 2b.

Fig. 3. Abstract executions of the histories from Figure 2. Arrows represent ar and rb relations. For readability,
we omit the so and wr relations. The event ey is received-before executing e; in Figure 3a but not in Figure 3b.
The arbitration relation is the same in both executions.

For an event e, we use e € ¢ to denote the fact that e € E.

Example 3.5. Figure 3 shows abstract executions for the histories in Figure 2. In both cases, the
receive-before relation includes only the wr dependencies which is anyway required by definition.
Reading a value at some replica r produced by an invocation e at some other replica r’ should imply
that e propagated to r. On the left, the arbitration order includes just the wr dependencies which
already ensure totality. On the right, FAA and CAS are concurrent, i.e., both invocations were executed
before either had a chance to propagate. We present the two possible arbitration orders. This shows
that the arbitration order cannot be always determined based on the information exchanged between
the replicas, i.e. by the receive-before.

The concept of abstract execution defined earlier is subsequently used to formalize the speci-
fications of distributed storage systems. We will start with a so-called basic class that concerns
“single-object” operations.

4 Basic Storage Specifications

We present a first class of storage specifications, called basic, where operations read and/or write a
single value from/to a single object (the operations in Example 3.1 satisfy this assumption). We will
present a more general framework with multi-object operations that read and/or write multiple
values or objects in Section 7.

In general, a storage specification has two parts: a consistency model characterizing the propaga-
tion of invocations between different replicas, and an operation specification which defines object
states and return values. The definition of consistency models builds on the work of [11, 12] and
the definition of operation specifications refines replicated data types as defined in [14]. The first
two subsections define these concepts for the class of operations mentioned above, and the last
subsection formalizes the validity of an abstract execution w.r.t. such storage specifications.

4.1 Basic Consistency Models

In general, a consistency model is defined as a non-empty set of visibility formulas that characterize
the context in which an event (invocation of an operation) is executed (abstractly speaking). The
context of an event e at a replica r is defined as the set of events, potentially from other replicas,
that propagated to r prior to executing e. The notion of validity w.r.t. a consistency model defined
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later will require that the event e which is read by another event e’ is the last in the arbitration
order ar within the context of e’. This accurately models the Last-Writer-Wins conflict resolution
policy (we consider other conflict resolution policies in Section 7). We define hereafter a class of
so-called basic consistency models that will be extended later in Section 7.1.

Formally, a visibility formula v describes a binary relation between events which is parametrized
by an object in Objs. This is written as a predicate v, (ey, e2) meaning that v relates e; to e, for
object x (explained below). A consistency model (criterion) CMod is a set of visibility formulas.

For a consistency model CMod and an abstract execution £, the context of an event r for object
x is the set of all events e which are related to r by some visibility formula in CMod along with a
projection of rb and ar to this set of events, i.e.,

ctxty (7, [£, CMod]) = (Ex, rbg, xE,, arg, xE,) With Ex = {e € £ | v € CMod. vy(e,7)} (1)

We use Contexts to denote the set of all possible contexts, i.e., tuples (E, rbg, arg) where E is a
finite set of events, rbg is an asymmetric, irreflexive relation over E, and arg is a strict total order
over E, such that rbg C arg.

Basic visibility formulas (used in basic consistency models) have the following form:

n
Vi (€0, &n) 7= Feg, ..., 1. /\(e,-_l,si) € Rel} A g writes x A wr;l(en) 0 (2)
i=1
where each relation Rel}, 1 < i < n, is defined by the grammar listed below:
Rel z= id | so | wr | rb | ar | Rel U Rel | Rel;Rel | Rel’ | Rel* | Rel* (3)

This formula states that ¢y (which is e in Eq.1) is connected to ¢, (which is r in Eq.1) by a
path of dependencies that go through some intermediate events ¢y, . .. &,-1 (all the ¢ variables are
interpreted as events). The constraint wr;!(e,) # 0 asks that ¢, reads the object x. Every relation
used in the path is a composition of so, wr, rb and ar via union U, composition of relations ;, and
transitive closure *. Rel’ is syntactic sugar for id U Rel, and Rel* for id U Rel*. Since the grammar
includes composition the existential quantifiers in Eq.3 do not increase expressivity (one could
write (&, €n41) € Rel(;...; Rel}). These quantifiers are used to simplify proofs in Section 6.

The predicate ¢ writes x means that & writes to object x, i.e., wval(e)(x) |.

We write vy (e, . . . e,) Whenever v, (e, e,) holds using the events ey, ... e,_; to instantiate the
existential quantifiers. The length of v,, denoted by len(vy), is the number of relations Rel used in
its definition (n in Equation (2)).

As mentioned above, a basic consistency model is a set of basic visibility formulas.

Figure 4 describes several visibility formulas and their corresponding consistency models, inspired
by Biswas et al. [11]. The dashed ar edges (leading to e) should be ignored for now. Basic visibility
formulas constrain events w.r.t. a single object — x. Later, we will define consistency models whose
visibility formulas can impose additional constraints that concern multiple objects.

We say that a consistency model CMod; is weaker than another consistency model CMod,,
denoted CMod; < CMod; if intuitively, the context of any event w.r.t. CMod is larger than the
context w.r.t. CMod,. Formally, CMod; < CMod; iff for every abstract execution &, event e € &
and object x, ctxty (e, [£, CMod;]) C ctxty (e, [£, CMod;]) holds. CMod; and CModj are equivalent,
denoted CMod; = CMod,, when CMod; < CMod; and CMod; < CMod;.

We assume that every consistency model CMod includes a visibility formula v§° (resp. v}") such
that so C v§° (resp. wry C v}") for every object x € Objs. The constraint so C v° corresponds to
the so-called "read-my-own-writes" consistency (i.e., an event "observes" every preceding event at
the same replica) and wr, C v} is a “well-formedness” constraint since visibility formulas will
constrain the write-read relation in a history (see Definition 4.2).
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writes x

W so U wr

£o writes x A wry!(e) # 0 A
(€, €1) € soU wr

(a) Return-Value

writes x

o writesx Awrg!(er) # 0 A
(&0, £1) € rb*

(b) Causal

writes x "
ar
) =———> e
A\
\\}
A\
ar'y, (soUwr)
“
N

Wy
e ——> £

£o writes x A wry!(e1) # 0 A
(&0, €1) € ar’; (so U wr)

(c) Prefix

writes x

€0
)
N

)
ar'y
\}

g0 writesx A wrgl(er) # 0 A
(€, €1) € ar

(d) SC / SER

Fig. 4. Visibility formulas defining the homonymous consistency models Return-Value Consistency (RVC,
Figure 4a), Causal Consistency (CC, Figure 4b), Prefix Consistency (PC, Figure 4c) and Sequential Consis-
tency/Serializability (SC/SER, Figure 4d). Solid edges describe the dependencies linking €y and ¢1. We include
the wry edge (and its source e) as a visualization of the constraint wry!(e;) # 0. Dashed ar edges are not
part of the visibility formulas. These capture the Last-Writer-Wins conflict resolution policy discussed later,
requiring that the event e being read succeeds all other events from the context in ar.

All consistency models in Figure 4 trivially satisfy this constraint as for any abstract execution,
soUwr C rb C ar. RVC is the weakest consistency model that our framework can describe.

4.2 Basic Operation Specifications

While visibility formulas define the context of an invocation in terms of prior invocations, the effect
of an invocation is defined using the following semantical functions: rspec says whether an event
reads an object or not, and wspec defines the value written by the invocation, if any. The written
value may depend on the value read by the event in the case of atomic read writes like FAA and
CAS. Concerning notations, for a partial function f : A — B, we use f(a) | to say that f is defined
for a € A, and f(a) T, otherwise. Similarly, for a predicate p over some set A, we use p(a) | to say
that p is true for a, and p(a) T, otherwise.

A basic read specification rspec is a predicate over Events. For example, Equation (4) describes
the read specification of faacas. We say that an event e is a read event if rspec(e) |, and in such
case, we say that e reads obj(e).

rspec(r) = true iff op(r) = GET, FAA, CAS (4)

A basic write specification wspec is a partial function wspec : Events — Vals — Vals, that

associates non-initial events to partial functions that map a read value to a value to be written. For
example, Equation (5) describes the write specification of faacas.

v’ if w = PUT(x,0")

if w =FAA(x,0")

if w=CAS(x,0",0"") Av =0’
undefined otherwise

wspec(w)(®) = ©,""

®)

For an event e, we say that e is a write event if wspec(e) |. We assume that if wspec(e) |, then
the function wspec(e) : Vals — Vals is defined for at least one value. We say that e writes x given v
if x = obj(e) and wspec(e)(v) |. We assume that every value v can enable at least one event to
write, i.e., there exists e € Events s.t. wspec(e)(v) |. We also assume that if e is a write event
but it is not a read event, e.g., a PUT invocation, then wspec(e) is a total constant function, i.e.
wspec(e) : Vals — Vals and wspec(e) (v1) = wspec(e)(vz) for all vy, v;.

Definition 4.1. A basic operation specification is a tuple OpSpec = (E, rspec, wspec) where E is a
set of events, such that obj(e) is a singleton for every e € E.
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We use Events[OpSpec] to refer to the set of events E in an operation specification.
Operation Closure. We define some natural assumptions about basic operation specifications
(it is easy to check that they hold on the faacas example with the definitions in Equation (4) and
Equation (5)). We assume that E contains at least one read and one write event. We also assume
that all objects support a common set of operations with identical read and write behavior, and
that these operations can be executed at any replica. Formally, for every event e € E, replica r,
identifier id and object x there exists an event e’ € E s.t. rep(e’) = r, id(e’) = id, obj(e’) = x,
rspec(e’) = rspec(e) and wspec(e’) = wspec(e).

(Conditional) Read-Write Events. We say that OpSpec allows read-writes if E contains an event
that is a read and a write event at the same time (e.g., FAA and CAS invocations); we call such events
read-write events. If OpSpec allows read-writes, then we assume that every value can enable some
read-write to write, i.e., for every value v, E contains a read-write event e s.t. wspec(e)(v) |. As
an example, this condition is not satisfied by a storage with only GET and TEST&SET operations
(TEST&SET writes 1 if it reads 0 and nothing otherwise). Indeed, value 1 cannot enable any write.

A read-write event is called unconditional if for every value v, wspec(e)(v) | and conditional
otherwise. For example, a FAA invocation is unconditional and a CAS invocation is conditional. We
assume that if OpSpec allows conditional writes, then every value v can disable some conditional
read-write to write, i.e., E contains a conditional read-write event s.t. wspec(e)(v) T.

4.3 Validity w.r.t. Basic Storage Specifications

A basic storage specification is a pair Spec = (CMod, OpSpec) where CMod is a basic consistency
model and OpSpec is a basic operation specification. Next, we formalize the validity of an abstract
execution w.r.t. a basic storage specification.

The interpretation of a basic visibility formula v, (&, ;) on an abstract execution ¢ is defined as
expected.

Definition 4.2. Let Spec = (CMod, OpSpec) be a basic storage specification. An abstract execution
&= (h,rb,ar) of a history h = (E, so, wr) is valid w.r.t. Spec iff
e it contains events from the operation specification, i.e., E C Events[OpSpec],
o the write-read dependencies of each event e € E for object x satisfy the following:
— if'e reads object x, i.e. rspec(e) | and x € obj(e), e reads from the write event in its context
that is maximal w.r.t. the arbitration order: wr;!(e) = {w¢},
— if e does not read object x, i.e. rspec(e) T or x ¢ obj(e), then wr;'(e) = 0.
o the value written by each event e € E to object x is consistent with wspec:
— if e reads object x, i.e. rspec(e) | and x € obj(e), then it writes based on the value read:
wval(e)(x) = wspec(e)(wval(w?)(x))>,
— if e does not read object x, i.e. rspec(e) T or x ¢ obj(e), then wval(e)(x) = wspec(e)(_)*,
where wi = max,, ctxty (e, [£, CMod]).

A history h is valid w.r.t. Spec iff there exists an abstract execution of h which is valid w.r.t. Spec.

Recall that the value function, and implicitly, the operation specification, are used to interpret
the visibility formulas of CMod and thus define invocation contexts.

Example 4.3. The abstract executions described in Figure 3 are both valid w.r.t. (CC, faacas) as every
event which is read is also received-before (wr C rb). However, only Figure 3a is valid w.r.t. (SC, faacas).
In Figure 3a, e, reads from the writing event that precedes it w.r.t. ar. On the other hand, in Figure 3b, e
reads x from init and not from ey which is its maximal visible event w.r.t. ar that writes x. Moreover,

3Since wval and wspec are partial functions, the equality also means that the left side is defined iff the right side is defined.
4_represents any value in Vals.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.



Arbitration-Free Consistency Is Available (and Vice Versa) 41:11

by the symmetry between ey and ey, it can be proven that any abstract execution of such history is not
valid w.r.t. (SC, faacas).

5 Programs and Storage Implementations

We model programs accessing a storage and storage implementations using Labeled Transition
Systems (LTSs). Their interaction via invocations of operations will be defined as the usual par-
allel composition of LTSs. We also present the notions of availability and validity of a storage
implementation, key to the AFC theorem.

5.1 Labeled Transition Systems

An LTS L = (S, A, 50, AA) is a tuple formed of a (possibly infinite) set of states S, a set of actions A,
an initial state sy € S and a (partial) transition function A : S X A — S. An execution of L is an
alternating sequence of states and actions p = s, ag, s1, a1, S2, - . - such that A(s;, a;) = si41 for each
i. A state s is reachable if there exists an execution ending in s. A trace of an execution p is the
projection of p over actions (the maximum subsequence of p formed of actions). The final state of
a finite trace t, denoted by state(t), is the last state of p. The set of all traces of L is denoted by 7.
An LTS is finite if all its traces are finite. For any finite trace t and action a, A(t, a) is defined as
A(state(t),a). If A(t,a) |, then t @ a is defined by appending a to ¢.

Let L; = (S1, Ay, sé, A1) and Ly = (S5, Ay, sg, A;) be two LTSs. We define a parallel composition
operator between L; and L, that is parametrized by a partial function 7 : A; — Aj. This function
allow us to define a relationship between a subset of A; and a subset of A,, called synchronized
actions of Ly and L. The set of actions a € A; for which 7 (a) is not defined (resp. actions a € A,
for which 771 (a) is not defined) are the local actions of L; (resp. L,). Without loss of generality, we
assume that the set of local actions of L; and L, are disjoint.

The parallel composition of L; and L, w.r.t. wis the LTS Ly 1|, Ly = (S, A, 5o, A) where S = S; X Sy,
A=A UA,;, sy = (s5,52), and A is defined as follows:

(A(sy,a), A(sy, m(a))) ifa € Ay, m(a) |, A(sy,a) |, and A(sy, m(a)) |

A e (A(sy,a),s2) ifae A, m(a) T, and A(sy,a) |
N (51, Az, @) ifa €Ay (a) T, and A(sza) |
undefined otherwise

(note the asymmetry due to using the function 7). Whenever there is no ambiguity w.r.t. 7 we
simply write Ly 1| L.

5.2 Programs and Storage Implementations

Let E be a set of events. A program over E is an LTS Py = (Sp, Ap, sg, Ap) such that E C Ap. Intuitively,
this LTS models all possible interleavings between invocations on different replicas. Actions in
Ap \ E represent computation steps performed by the program locally, before or after invoking
operations on the storage. Also, to simplify the technical exposition, we do not consider separate
transitions for calling and returning from a storage operation. Intuitively, the transitions labeled by
events occur at the return time.

A storage implementation over E is an LTS I = (S;, A;, s(i), A;) such that A; contains (1) an arbitrary
set of local actions (representing computation/communication steps internal to the storage), and (2)
pairs of events in E and their read-dependencies, i.e., pairs (e, m) where e € E and m : Objs — P(E).
Intuitively, m represents the write-read dependencies of e. We also assume that each action includes
an identifier, denoted by id(a), so that along an execution every action occurs only once. For any
action a = (e, m), ev(a) and wr-Set(a) denote the event e and the write-read dependencies m
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respectively. Also, op(a) = op(e) is the operation type of a. To model communication, we assume
that A; includes two types of local actions, send actions for sending a message (from one replica to
another) and receive to receive a message.

The formalization of send/receive actions is straightforward and we omit it. We will say that
a send action matches a receive action if they concern precisely the same message (messages
are associated with unique identifiers). For any send, resp., receive, action a at some replica r,
rb-Set(a) denotes the set of events that r sends in this message, resp., that r receives in this message.
We assume that if a trace t contains any such action, for every event e € rb-Set(a) there must exist
an action (e, _) preceding a in t. As expected, if a; and a, match, then rb-Set(as) = rb-Set(a,).

For any action a € A, U Aj, rep(a) denotes the replica executing a.

The interaction between a storage implementation I and a program Pg is defined as their
asymmetric parallel composition w.r.t. a partial function 7 : A; — A, which is defined only
for actions of the form (e, m) (as described above) by 7 (e, m) = e. The program and the storage
implementation synchronize on events representing operation invocations. It is denoted by I I| P.
By definition, traces of Ig || Pg include actions of the form (e, m) (coming from A;), and local actions
of Pg or IE.

Traces of I (or Ig || Pg) induce histories and abstract executions. The induced history of a trace t
of I (or Iy || Pg) is the history h = (E’, so’, wr’) where E’ is the set events e such that some action
a. = (e,m) occurs in t, so’ orders events from the same replica as they occur in t, and for every
object x and event e, (wrk)~1(e) = W iff wr-Set(a.) = (x, W) (. is the action that contains e). We
implicitly assume that for any event e € E different from init, (init,e) € so’. We use h(t) to
denote the induced history of a trace .

The induced receive-before of a trace t of I (or Ig || Pg) is the relation rb’ over events induced by the
matching relation between sends and receives: (e, e’) € rb’ iff (e, e’) € so’ or there exists matching
send and receive actions, as, a, and a synchronized action a = (¢, _) s.t. rep(a,) = rep(a), a,
occurs before a in ¢, and e € rb-Set(a,) (which coincides with rb-Set(a,)).

A trace t of Iy also induces a set of abstract executions of the form & = (h(t), rb’, ar’) where ar’
is any total order between the events in £ that is consistent with rb’, i.e., rb* C ar’ (to satisfy the
requirements in Definition 3.4).

5.3 Availability and Validity of a Storage Implementation

We say that a storage implementation I is available if, intuitively, every execution of Iy terminates
when interacting with a finite program Pg (executing a single synchronized action does not make a
replica enter an infinite loop of local steps), and no invocation is delayed due to a replica waiting
for messages.

We say that a replica r € Reps is waiting in a trace ¢ of some composition Ig || Pg if

e the program can execute some action at replica r: there is an action a € A, s.t. rep(a) =r
and Ap, (t',a) |; where t’ is obtained from ¢ by removing all local actions of Ir and replacing
every action (e’, m) with e’, and

o the only actions of replica r that the parallel composition can execute are receive actions:
for every action a € A, U A; s.t. a is not a receive action and rep(a) =, App,(t,a) T.

Note that the latter implies that the action a that Pg can execute after ¢’ is necessarily an event in E
(otherwise, a is a local action of P and the parallel composition could execute it).
Definition 5.1. An implementation I is available if the following hold:

o for every finite program Pg, the composition Ig || Pg is also finite, and
o for every program Pg and every trace t of Ig || Pg, there is no replica waiting in t.
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Given a storage specification Spec over a set of events E, a storage implementation I is valid w.r.t.
Spec if every trace t induces some abstract execution which is valid w.r.t. Spec.An implementation
valid w.r.t. Spec is simply called a Spec-implementation (or implementation of Spec).

6 The Basic Arbitration-Free Consistency Theorem

We present a simpler instance of our main result (the AFC theorem) for basic storage specifications.

To simplify the statement of the theorem, we define a normal form for basic consistency models
w.r.t. a basic operation specification OpSpec. A visibility formula is called simple if it does not
use composition operators between relations, i.e., the grammar in Equation (3) is replaced by:
Rel == so | wr | rb | ar. Also, a visibility formula v from a consistency model CMod is called
vacuous w.r.t. OpSpec iff for every abstract execution &, & is valid w.r.t. (CMod, OpSpec) iff & is
valid w.r.t. (CMod \ {v}, OpSpec). For example, if Rel! and Rel},; in Equation (2) are wr (for some
i), then any instance of &; must be an invocation of a read-write that both reads and writes. If the
operation specification does not include read-writes (e.g., a key-value store with only PUT and GET
operations), such visibility formulas are vacuous.

Definition 6.1. A basic consistency model CMod is called in normal form w.r.t. a basic operation
specification OpSpec if it contains only simple visibility formulas and no visibility formula from
CMod is vacuous w.r.t. OpSpec.

A normal form of a basic consistency model CMod w.r.t. OpSpec is any basic consistency model
CMod’ in normal form, such that for every abstract execution &, £ is valid w.r.t. (CMod, OpSpec)
iff £ is valid w.r.t. (CMod’, OpSpec). We show in Appendix B that every basic consistency model
CMod has a normal form. A normal form can be obtained by replacing each visibility formula v
with an equivalent (possibly infinite) set of simple visibility formulas S,. Each set S, is obtained by
recursively decomposing the union, composition and transitive closure operators in each relation
Rel” (see Equation (2)).

A visibility formula is called arbitration-free if its definition does not use the arbitration relation
ar, i.e. the grammar in Equation (3) omits the ar relation. For example, in Figure 4, RVC and CC are
arbitration-free while PC and SC are not.

Definition 6.2. A consistency model is called arbitration-free w.r.t. an operation specification OpSpec
if the visibility formulas contained in some normal form w.r.t. OpSpec are arbitration-free.

Defining arbitration-free via a normal form removes “redundant” occurrences of the arbitration-
order, i.e. visibility relations that employ ar but are vacuous w.r.t. OpSpec. We also show in Appen-
dix B that for every basic consistency model CMod, if some normal form consists of arbitration-free
visibility formulas, then this holds for any other normal form (this is actually proved for the more
general class of consistency models defined in Section 7.1).

THEOREM 6.3 (BAsiC ARBITRATION-FREE CONSISTENCY (AFCy)). Let Spec = (CMod, OpSpec) be
a basic storage specification. The following statements are equivalent:

(1) CMod is arbitration-free w.r.t. OpSpec,
(2) there exists an available Spec-implementation.

In the following, we present a summary for the proof of AFCy, which contains a series of lemmas.
We refer the reader to Appendix C for a detailed proof. Lemmas 6.4 to 6.6 show that if CMod is
arbitration-free then there exists an available Spec-implementation, whereas Lemma 6.7 is used to
show the converse.
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6.1 Arbitration-Freeness Implies Availability
Assume that CMod is arbitration-free w.r.t. OpSpec. We first show that CMod is weaker than CC.

Lemma 6.4. Let Spec = (CMod, OpSpec) be a basic storage specification. If CMod is arbitration-free
w.r.t. OpSpec, then CMod is weaker than CC.

Proor SKETCH. If CMod is arbitration-free, then every simple visibility formula v in a normal
form of CMod does not use ar, i.e. it only uses so, wr and rb. By Definition 3.4, so U wr C rb
in any abstract execution &. Hence, for every object x, ctxtcmod (7, [£ x]) € ctxtee(r, [& x]), i.e.
CMod < CC. O

Lemma 6.5 below implies that if a consistency model CMod is weaker than CC, then any available
(CC, OpSpec)-implementation is also an available (CMod, OpSpec)-implementation.

Lemma 6.5. Let OpSpec be a basic operation specification, and let CMod;, CMod;, be a pair of
basic consistency models s.t. CMod, is weaker than CMod;. Any abstract execution valid w.r.t.
(CMody, OpSpec) is also valid w.r.t. (CMod;, OpSpec).

Lemma 6.6 shows that there exists an available (CC, OpSpec)-implementation, which concludes
the proof of this direction.

Lemma 6.6. Let OpSpec be a basic operation specification. There exists an available (CC, OpSpec)-
implementation.

Proor SKETCH. We define an available storage implementation of (CC, OpSpec) which is an
abstraction of existing CC implementations [9, 10, 25, 26].

The storage implementation I describes a transition function associating events with the write-
read relation obtained by computing the maximum writing event on its causal past (i.e. all write
events that are already received in its replica). Each replica r maintains the causal past as follows: (1)
every event invoked at r is added to r’s causal past, (2) after every invocation, r broadcasts a message
to all other replicas that contains its causal past, (3) whenever a replica r’ receives this message,
it adds the included causal past to its own. Sent messages are not required to be received before
executing an invocation. The latter implies trivially that Ir is an available storage implementation.
The validity w.r.t. (CC, OpSpec) follows easily from the “transitive” communication of causal pasts
between replicas. O

6.2 Availability Implies Arbitration-Freeness

We prove the contrapositive: if CMod is not arbitration-free, then no available Spec-implementation
exists. Indeed, if CMod is not arbitration-free, every normal form CMod’ of CMod contains a simple
visibility formula involving ar (see Definition 6.2). By Lemma 6.7, such a formula precludes the
existence of an available (CMod’, OpSpec)-implementation. Consequently, there is no available
(CMod, OpSpec)-implementation, since any such implementation would also be an available
(CMod’, OpSpec)-implementation - this is an easy observation as CMod is equivalent to CMod’.

Lemma 6.7. Let Spec = (CMod, OpSpec) be a basic storage specification. Assume that CMod
contains a simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some i, 0 <
i < len(v), Rel} = ar. Then, there is no available (CMod, OpSpec)-implementation.

Proor SKETCH. We assume by contradiction that there is an available implementation Ir of Spec.
. We use the visibility formula v to construct a specific program, which by the assumption, admits a
trace (in the composition with this implementation) that contains no receive action. We show that
any abstract execution induced by this trace, which is admissible by any available implementation
of Spec, is not valid w.r.t. Spec.
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Rel}, so | | Rel,
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Fig. 5. Abstract execution of a trace without receive actions for the visibility formula v. If i # dy, (el 1, x’) €
Rel} holds because the two events are executed at the same replica (recall that so C rb C ar). If (e " ) €

ar, then since so C ar and ar is transitive, we get that (ed o z") € Relg = ar; and therefore, that vxo(eo ,ex)

holds. However, in the absence of receives, (ego, eﬁ") ¢ rb.

The program P we construct generalizes the litmus programs presented in Figure 1. P uses two
replicas ry, r1, two distinguished objects xy, x; and a collection of events ef’ ,0<i<nle{01}.
The events are used to “encode” two instances vy, and vy, of the visibility formula.

Let d, be the largest index i s.t. Rel} = ar (last occurrence of ar). Then, v is formed of two parts:
the path of dependencies from ¢, to ¢4, which is not arbitration-free, and the suffix from ¢4, up to
Elen(v)» the arbitration-free part. Thus, v is of the form:

n
vy(eo, &n) o= ey, ..., En1. /\(ei_l,ei) € Rel} A ¢ writes x A wr;l(e,) # 0

i=1

where n = len(v), Rel} € {so, wr,rb,ar} for i < d,, ReléV = ar, and Rel] € {so, wr, rb} for i > d,.
Replica r; executes first events ;' with i < d, and then, events e;'~' with i > d, — the replica

r; executes the non arbitration-free part of v for object x; and the arbitration-free suffix of v for
x1_1. All events in replica r; access (read and/or write) object x; except for e;; which reads x;_;.
For ensuring that v, (e, ... e,') holds in an induced abstract execution of a trace without receive
actions, we require that if Rel{ = wr, then ;" is a write event and e;" is a read event. Figure 5
exhibits a diagram of such execution.

1

Example 6.8. We illustrate the construction for Prefix Consistency (PC) and a Key-Value store with
PUT and GET operations (their specification is defined in Section 4.2). PC can be defined as the following
set of simple visibility formulas (obtained from Prefix in Figure 4c):

vi(ep,e1) = go writesx A wr;l(e;) #0 A (&, €1) € so

Vi(ep,€1) m= g writesx A wril(e)) #0 A (&,€1) € wr

VS (€ —— 3 . -1 (6)
2(€0,€2) 5= ey, o writesx A wry (&) #0 A (g0, 61) € ar A (e1,€2) € so

vi(eo, &) n= Tey. go writes x A wr;l(e) # 0 A (e0,61) € ar A (&1, 8) € wr
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Observe that v is vacuous w.r.t. the specification of PUT and GET since it implies that e, reads from
multiple events, and PUT and GET read a single object at a time. Thus, the normal form of PC w.r.t. the
specification of PUT and GET contains only the first three visibility formulas above.

The only visibility formula which is not arbitration-free is v>. We have that the index d, = 1 and we
consider the following types of events:

ey’ : PUT(xo,_), e1* : PUT(x1,_), €,° : GET(xq)
ey 1 PUT(xy,_), e1" : PUT(x0,_), €5 : GET(x1)

Replica ry executes ;" and then e;* and e)". Replica ry executes e,' and then e}" and e}’

Given such a program P, the proof proceeds as follows:

(1) There exists a finite trace t of P || Ir that contains no receive action (Lemma C.5): Since I is
available, it can always delay receiving messages, and execute other actions instead. Then, as
P is a finite program, such an execution must be finite.

(2) The trace t induces a history h, = (E, so, wr) and an abstract execution &, = (h, rb, ar) where
rb = so (ar is arbitrary as long as rb C ar). As I is valid w.r.t. Spec, &, is valid w.r.t. Spec.
Next, we prove that since rb = so, events in &, read the latest value w.r.t. so written on their
associated object in ¢, (Lemma C.6). In particular, we deduce that all traces of P without
receive events induce the same history and therefore, the induced history does not change
when the induced arbitration order changes.

(3) Since ar is a total order, either (823—1’ ez;vl_l) € ar or (ej;vl_l, eﬁj_l) € ar. W.lo.g., assume that
(6;3—1’ egj_l) € ar. By Lemma C.7, we deduce that €;" € ctxty, (e;’, [&, CMod]). The proof is
explained in Figure 5: if (e}’
Vi, (€5, ... €p") holds in &,.

(4) Since e} is the only event at r; that reads or writes x; and events in &, read the latests values
w.r.t.soin &, we deduce that e};° reads x, from init. However, as e(’;" € ctxty, (ey’, [&, CMod])
and init precedes eg" in arbitration order, we deduce that e;;’ does not read the latest value
w.rt. ar, ie. rspec(e;’) | but wr;ol(eﬁ") # {max,, ctxty, (e;’, [£,, CMod])}. Therefore, &
is not valid w.r.t. Spec (see Definition 4.2). This contradicts the hypothesis that Ig is an
implementation of Spec. m]

p e;”_l) € ar, then all events ef" form a path in such way that

The corollary below is a direct consequence of Theorem 6.3 and Lemma 6.4.

Corollary 6.9. Let OpSpec be a basic operation specification. The strongest consistency model CMod
for which (CMod, OpSpec) admits an available implementation is CC.

7 Generalized Distributed Storage Specifications

We describe a generalization of the basic storage specifications from Section 4 along three di-
mensions: a larger class of consistency models, multi-object operations, and more general read
behaviors. To rule out anomalous behaviors in this generalization, we introduce a set of additional
assumptions. Figure 6 summarizes the structure of storage specifications and the relationship
between basic and generalized specifications in terms of assumptions.

7.1 Consistency Models

The set of basic consistency models (Section 4.1) does not include (parallel) snapshot isolation,
and the version of k-bounded staleness considered in Section 2. Snapshot Isolation, k-Bounded
Staleness and Parallel Snapshot Isolation are defined, respectively, using the visibility formulas
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Basic Storage Specification Storage Specification
e N e B
Basic Consistency Model Consistency Model
e B e
Visibility formulas (Eq. 2) Visibility formulas with conflict predicates (Eq. 7)
Causal-suffix closure (Sec. 7.1)
N J N J
© Basic Operation Specification Operation Specification §
e N e N | S
§ rspec and wspec rspec (Def. 7.4), extract (Def. 7.5) and wspec (Def. 7.6) 3
E Operation closure (Sec. 4.2) Operation closure (Sec. 7.4) %
Reading from a single visible write: Reading from multiple visible writes: ©
Reading from max., (Sec. 4.2) Maximally-layered rspec (Sec. 7.4)
Writing to a single object: Writing to multiple objects:
Every value enables and disables some 3 execution-correctors (Def. 7.13)
conditional read-write event (Sec. 4.2)
N J
N J N J

Fig. 6. Conceptual map relating basic and generalized storage specifications (Sections 4 and 7). Storage
specifications are composed of consistency models and operation specifications. Assumptions are written in
bold text. Arrows denote how definitions/assumptions translate from the basic case to the general case.

Conflict (Figure 7a), k-Bounded (Figure 7b)°, and n-PSI (Figure 7c). To include such consistency
models in our formalization, we extend the syntax of visibility formulas so that the intermediate
events can be further constrained via the wrCons formula:

n
V&0, n) = ey, ..., En1. /\(s,-_l,si) € Rel] A wrgl(en) # 0 A wrConsy. (g, . .. &n) (7)

i=1
The formula wrCons}. (&, . . . &) is a conjunction of predicates conflict (E) and conflict, (E) with
E C {eo, . ..éen}. The predicate conflict(E) (resp., conflicty(E)) means that all the events in E write
on some object y (resp., the object x). Since we want to preserve the constraint & writes x from basic
visibility formulas, we require that there exists a set E C {¢, ... é&,} s.t. & € E and conflict, (E) is
included in wrCons}.(&, ... &,) (E can be the singleton ¢). The interpretation of a conflict predicate
in an abstract execution ¢ is done as expected: a predicate conflict(E) (resp., conflict,(E)) holds
iff there exists an object y s.t. for every e € E, e writes y in & (resp. e writes x in £). As before, the

predicate ¢ writes y is true iff wval(e)(y) |.

From this point on, a consistency model is defined as a set of visibility formulas, as in Equation (7).

Normal Form. We generalize the normal form of a consistency model to take into account con-
flict predicates. A consistency model in normal form only contains visibility formulas that are
simple, non-vacuous and “conflict-maximal”. A conflict-strengthening of a visibility formula v is
a visibility formula v’ obtained from v by (1) replacing some occurrence of conflict(E) (resp.,
conflicty,(E)) with conflict(E") (resp., conflict,(E")) where E’ is a strict superset of E or (2) re-
moving predicate conflict (E) if conflict, (E) also belongs to v. A visibility formula v is conflict-
maximal w.r.t. OpSpec iff there is no conflict-strengthening v’ such that for every execution & over
events in Events[OpSpec], object x, and events ey, . . . €fen(v), if Vx(€o, ... €len(v)) holds in &, then
Vi (€0, ... €len(v)) holds in & as well. A consistency model CMod is conflict-maximal w.r.t. OpSpec
iff all its visibility formulas are conflict-maximal w.r.t. OpSpec.

For example, if Rel} = wr, any instance of ¢; must write on some object y. In conflict-maximal
visibility formulas, this fact is represented with a conflict predicate (conflict (E) or conflicty(E)) s.t.
€i—1 € E. If OpSpec requires that every event reading y also writes on y, then in a conflict-maximal
visibility formula, both ¢;_1, ¢; belong to E. In general, if in any abstract execution, the events

5Qur version of k-Bounded Staleness corresponds to the (k, T)-Bounded Staleness with T = o as defined in [28].
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writes x  writes x;  writes x;
writes x art writes y writes x writes x g 2> £ = &
< N S N it
) — £ ———> £ \ L writes xp
“ . ~ | £2.n-1
\ ar “\ £k-1  writes x ar\y dar )
ar\\\ AI"“ \i‘ £2.n writes x5
\V\l N ar ¥ wr Urb“‘
.
wr

writes y

Jey. (9, €1) € ar* A (e1,&) € ar A
wril(er) #0 A g writes x A
conflict (&1, €2)

der .. k1. /\{-;1(6'[_1,8[) € arA
wril(e1) # 0 Aconflicty (e, - - - ex—1)

€2:n+1

der...n. /\?:0(62‘i,52«i+1) € rb*A
AL (€2.-1,€2.4) € ar A
wryl(er) # 0 A & writes x
NIz, conflict (e2.4-1, £2.7)

(a) Conflict (b) k-Bounded (c) n-PSI

Fig. 7. Conflict, k-Bounded and n-PSI visibility formulas used to define Snapshot Isolation (SI), Bounded
Staleness (BS) and Parallel Snapshot Isolation (PSI). SI is defined by Prefix (Figure 4c) and Conflict, BS is
defined by k-Bounded and Return-Value (Figure 4a), and PSI is defined by Causal (Figure 4b) and the set of
visibility formulas {n-PSI | n > 1}.

instantiating ¢&;,, ..
formula v must contain the predicate conflict(¢;,, . .

., &, from v, always conflict (resp. they always write x), then the visibility
., €1;) (resp. conflicty (e;,, . . ., €,)).

Definition 7.1. A consistency model CMod is called in normal form w.r.t. a operation specification
OpSpec if it contains only simple, conflict-maximal visibility formulas and no visibility formula from
CMod is vacuous w.r.t. OpSpec.

Under some operation specifications, consistency models can be equivalent due to conflict
predicates. For example, in a storage with only FAA operations, SI and SER are equivalent due to
the Conflict visibility formula: in this specification, every event is both a read and a write event
and so any event reading x conflicts with an event writing x.

Similarly to Section 6, we say that a consistency model CMod is arbitration-free w.r.t. an operation
specification OpSpec if there exists a consistency model in general normal form w.r.t. OpSpec that
is equivalent to CMod and whose visibility formulas are arbitration-free. Appendix B demonstrates
the existence of a normal form and shows that it is not possible for two normal forms to differ
solely in that one includes only arbitration-free visibility formulas while the other does not. This
result confirms that arbitration-freedom is not a property of the chosen normal form, but rather an
inherent characteristic of the definitions of CMod and OpSpec.

Causal Suffix Closure. We introduce an assumption about consistency models which is used in
the proof of the AFC theorem in order to find counterexamples to availability that involve only two
replicas. This assumption is satisfied by all practical cases that we are aware of (see Example 7.3).

Therefore, we assume that every normal form CMod of a consistency model is closed under
causal suffixes, i.e., for every visibility formula v,, € CMod, CMod contains every arbitration-free
“suffix” of v, that starts with an event writing x. Thinking about a visibility formula v as a path of
dependencies (between the pairs (¢;_1, €;)), a suffix of v is a suffix of that path. For example, the
visibility formulas s and s” described in Equation (9) and Equation (10) are suffixes of the visibility
formula in Equation (8).

Vi (0, €3) = ey, £2.(£0,€1) € tb A (1, 82) € ar A (e2,83) € s0 A wry'(e3) # 0 A conflicty (e, &1, £)

(®)
Se(€1,63) = ez (e1,62) € ar A (&2,63) €50 A wr;1(£3) # 0 A conflicty (e, &) 9)
sl.(e2,63) = (£2,€3) €50 A wry'(e3) # O A conflicty (&) (10)
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Formally, let v, be a visibility formula defined as in Equation (7). Let conflict, (vy) be the union of
the sets E such that conflict, (E) occurs in the definition of v,. For any variable ¢ € conflicty(vy),
the &,-suffix of v, is the formula obtained by (1) removing the quantifiers for the first k quantified
events, e; . .. eg, and (2) removing all occurrences of the (now) free variables e, . .. ex_1, i.e.:

n
suffy (v, k) (e, €n) == st ..., En1. /\ (ei-1,€) € Rel! Awr;'(e,) # O A wrConsY. (e, . .. &)
i=k+1

where wrCons}. (¢, . . . €,) is obtained from wrCons}.(¢, . . . €,) by projecting all the conflict predi-
cates over the set of events Ey = {¢, ..., &,}, .e., a predicate conflict (E) (resp. conflict, (E)) occurs
in wrCons}. (&, . . . &n) iff conflict (E N Ex) (resp. conflicty (E N Ex)) occurs in wrConsy. (e, . . . &,).

We refer to arbitration-free suffixes as causal, since the remaining dependencies intuitively reflect
broader notions of causality. The intuition behind this notion of closure is that the context of an
invocation should be upward-closed with respect to causality—meaning that if an update (writing
x) is included, then any later updates (writing x) along the dependency path defined by the visibility
formula that lie in its causal past must also be included.

We say that a visibility formula v’ subsumes a visibility formula v of the same length if for every
i,1<i<len(v), Relf' is stronger or equal than Rel}. We say that rb is stronger than so and wr, and
ar is stronger than rb, so and wr. The extension of “being stronger” to any relation Rel described
using Equation (3) is done as expected, as all our operators are positive (there are no negations).

Definition 7.2. A consistency model CMod is closed under causal suffixes if for every v, € CMod
and ¢ € conflicty(vy), CMod includes some visibility formula v’ that subsumes every arbitration-free

suffix of v.

Example 7.3. A consistency model containing the visibility formula v in Equation (8) must also
contain the visibility formula s’ in order to be closed under causal suffixes. Note that s uses arbitration
and it is not required to be included.

Any basic consistency model is closed under causal suffixes because every basic visibility formula
has no proper arbitration-free suffix. Indeed, conflict,(vy) contains just the first event &y (assuming
that &y writes x is rewritten as conflict, ({&o})). The models described in Figures 4 and 7 are trivially
closed under causal suffixes because their visibility formulas have no arbitration-free suffixes.

7.2 Operation Specifications

We generalize operation specifications to allow operations to access (read or write) multiple objects,
and to support read values that are not limited to the inputs of individual write operations. For
example, this includes multi-value reads that return all concurrently written values for an object,
or counter reads that return an aggregated value computed from all observed increments.

The generalized reading behavior is modeled using two functions rspec and extract described
hereafter. We also introduce a generalized wspec function. Therefore, rspec selects from a given
context the events (updates) which are relevant for a reading invocation, extract defines the value
read by an invocation, if any (based on the output of rspec), and wspec defines the value written
by an invocation, if any (to model conditional read-writes, this is based on the output of extract).

Definition 7.4. A read specification rspec : Events — Objs — Contexts — P (Events) is a
function such that for every object x, context ¢ = (E, rb, ar) and event e:

(1) well-formedness: rspec(e)(x,c) C E, and if e is an initial event, rspec(e)(x,c) = 0, and
(2) unconditional reading: ifrspec(e)(x, ¢) # O for some context c, then for every non-empty context
¢/, rspec(e)(x,c’) # 0
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Equations (11) to (13) describe the read specifications of faacas, a key-value store k-mv with
PUT (x, v) and multi-value GET(x) operations (Appendix A.2), and a collection of distributed counters
counter with inc(x) and rd(x) operations (Appendix A.3). Concerning the relationship to basic
read specifications, note that the faacas specification in Equation (4) was simpler because the
constraint from Equation (11) was imposed in the notion of validity for abstraction executions
(Definition 4.2). For multi-value reads (Equation (12)), the read specification selects the maximal
elements in the receive-before relation (which models causality), and for a counter (Equation (13)),
it returns all events in the context.

max,, E}, if r € {GET(x), FAA(x,v),CAS(x,0,0")} and ¢ = (E, rb, ar
pec(r)(x.c) - {{@ bif € (GETG:), FAa(n) (b and e = Bbar)
max,, E, if r = GET(x) and ¢ = (E, rb, ar
rspec(r)(x,¢) = { 0 ' otherwise( ) ( ) (12)
E, ifr=rd(x)andc=(E,rb,ar
rspec(r) (x, ¢) = { 0 otherwis(e : ( : (13)

The extract specification below computes the value returned from an object x based on the set
of invocations writing x returned by the read specification which are paired with values they write
(this will become clearer when defining the application of these functions on an abstract execution).

Definition 7.5. An extract specification extract : Events — Objs — $(Events X Vals) — Vals,
such that extract(init) is defined for every initial event init.

Equation (14) describes the extract specification of faacas: the value extracted for GET, FAA
and CAS coincides with the value written by some previous PUT/FAA/CAS operation. Equation (15)
describes the extract specification of k-mv: the value extracted for GET is the set of values written
by some previous PUT. In the case of counter, Equation (16), the value extracted for rd returns the
number of increment invocations in the input, which equals |R| minus one for the initial event
init which is always included in R (since it is so before all other events).

) if r € {GET(x), FAA(x,0”),CAS(x,v’,9”")} and R = {(w, v
extract(r) (x, R) = {undeﬁned othervflise ) ( : ( & U & (14)
) {ol(Lv) €eR} ifr=GET(x)
extract(r) (x, R) = { undefined otherwise (15)
| IRI-1 if r = rd(x)
extract(r)(x, R) = { undefined otherwise (16)

Finally, the write specification computes the value written by an invocation to an object x, based
on the values it reads. This makes it possible to model atomic read-writes, e.g., a compare-and-
swap, which may write or not depending on what they read, or the value they write may change
depending on what they read, e.g., a Fetch-and-Add.

Definition 7.6. A write specification wspec : Events — Objs — Vals — Vals is a function such
that wspec(init) is defined for every initial event init.

The write specification of faacas and k-mv, Equation (17), describes that its write operations are
PUT, FAA and CAS. PUT and FAA unconditionally writes on x while CAS does it depending on the
read-and-extracted value of x; where x is the only object accessed by the invocation. In the case of
counter, Equation (19), only the operation inc(x) writes, writing a dummy value 1 just to indicate
that the write has taken place.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.



Arbitration-Free Consistency Is Available (and Vice Versa) 41:21

v’ if w = PUT(x,0")

) v+ if w = FAA(x,0")
wspec(w)(x,0) = v” if w = CAS(x,0",0"”") Ao =20’ a7

undefined otherwise
| if w = PUT(x,0")
wspec(w)(x, 0) _{ undefined otherwise (18)
1 if w=1inc(x)

wspec(w)(x, ) = { undefined otherwise (19)

Definition 7.7. An operation specification is a tuple OpSpec = (E, rspec, extract, wspec) where E
is a set of events. Events[OpSpec] refers to the set of events E in an operation specification.

Appendix A contains more examples of operation specifications, including SQL statements.

7.3 Validity w.r.t. Storage Specifications

We extend the notion of validity for abstract executions to (general) storage specifications, in a
way that is similar to the case of basic storage specifications (Section 4.3). We use the extension of
rspec, extract, and wspec to abstract executions defined below:

rspec(e)(x, [£, CMod]) = rspec(e)(x, ctxty (e, [£, CMod]))
extract(e) (x, [£, CMod]) = extract(e) (x, {(e’,wval(e)(x)) | e’ € rspec(e)(x, [£,CMod])})
wspec(e)(x, [£, CMod]) = wspec(e)(x, extract(e)(x, [£, CMod]))
Definition 7.8. Let Spec = (CMod, OpSpec) be a storage specification. An abstract execution
&= (h,rb, ar) of a history h = (E, so, wr) is valid w.r.t. Spec iff
e ¢ contains events from the operation specification, i.e., E C Events[OpSpec],
e for every eventr € E, wr;!(r) = rspec(r)(x, [£, CMod]), and
o the value written by each event e € E to object x is consistent with wspec, i.e., wval(e)(x) =
wspec(e)(x, [£, CMod]).
A history h is valid w.r.t. Spec iff there exists an abstract execution of h which is valid w.r.t. Spec.

Observe that Definition 7.8 coincides with Definition 4.2 for storage systems that also admit
basic storage specifications, e.g., faacas.

7.4 Assumptions About Operation Specifications
To avoid pathological behaviors in the generalization of specifications, we make several assumptions.

Maximally-Layered Read Specifications. For any basic operation specification OpSpec, the
validity of an abstract execution w.r.t. a stronger consistency model (and OpSpec) implies validity
w.r.t. a weaker one (see Lemma 6.5). In general, this is not true for operation specifications as
described in this section (see Example 7.9). Therefore, we introduce an assumption about read
specifications, called maximally-layered, which ensures that this property remains true.

Example 7.9. Let OpSpec = (E, rspec, extract, wspec) be an operation specification of a key-value
store with GET and PUT operations whose read specification is given by Equation (20).

{max,, E} ifBe’ € E s.t.rep(e) # rep(e’) andc = (E,rb, ar)

.. R 20
init otherwise (20)

rspec(e)(x,c) = {

We compare the validity of the abstract execution & depicted in Figure 8 w.r.t. SC and CC (observe
that CC < SC). Under SC both ey and e, are visible to e;, which implies rspec(ez)(x, [£,SC]) =

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.



41:22 Hagit Attiya, Constantin Enea, and Enrique Roman-Calvo

init init

€0

o e e a %_\rl\
we\ (AT ) PutCen %
sol e

(a) History of a key-value store with PUT and GET.  (b) An abstract execution of the history in Figure 8a.

Fig. 8. A history and an abstract execution of the operation specification in Example 7.9. For readability, we
omit the so and wr relations from the abstract execution. Events e; and ey are executed in the same replica,
different from eg’s replica.

{init}. Therefore, £ is valid w.r.t. SC. However, under CC, only e; is visible to ey, which implies
rspec(ez) (x, [£ CC]) = {e1}, and therefore, ¢ is not valid w.r.t. CC.

Let < be a partial order over a set A. A chain of < is a subset of A which is totally ordered w.r.t.
<. The layer of an element a € A is the size of the largest chain of < which includes a but no
elements smaller than a, and a maximal element. For instance, the layer of a maximal element is 1
(the aforementioned largest chain includes just the element itself), the level of a strict predecessor
of a maximal element is 2, and so on. A subset B C A is called k-maximally layered w.r.t. < if B is
the set of all elements in A of layer k” < k. When < is also a total order, the notion of maximally
layered is equivalent to being upward closed w.r.t. <. Otherwise, it is equivalent to being upward
closed w.r.t. every total extension of <.

A read specification rspec is k-maximally layered w.r.t. ar (resp. rb™) if for every object x, context
¢ = {E, rb, ar}, and event e, either rspec(e)(x, c) = 0 or rspec(e)(x, ¢) is k-maximally layered w.r.t.
ar (resp. rb*). The layer bound of rspec is defined as k. To cover cases where there is no such k, we
say that a read specification rspec is co-maximally layered if for every x, context ¢ = {E, rb, ar}, and
event e, either rspec(e)(x, c) = 0 or E; and we say that the layer bound is co. When the layer bound
and the partial order (ar or rb*) are irrelevant, we simply say that rspec is maximally layered.

Example 7.10. For example, faacas is 1-maximally layered w.r.t. ar, k-mv is 1-maximally layered
w.r.t. rb* and counter is co-maximally layered. On the other hand, the read specification in Example 7.9
is not maximally layered since it can sometimes return init from a non-empty context.

Lemma 7.11. Let OpSpec be a maximall-layered operation specification and let CMod;, CMod, be
a pair of consistency models such that CModj is stronger than CMod;. Any abstract execution valid
w.r.t. (CMody, OpSpec) is also valid w.r.t. (CMody, OpSpec).

Operation Closure. As in Section 4.2, we assume that OpSpec contains at least a read and a
write event. Also, we assume that all objects support a common set of operations with identical
read and write behavior, and that these operations can be executed at any replica. Formally, for
every event e € E, replica r, and identifier id, there exists an event e’ s.t. rep(e’) =r, id(e’) = id,
obj(e”) = obj(e), rspec(e’) = rspec(e), extract(e’) = extract(e), and wspec(e’) = wspec(e).

We also assume that operations apply uniformly to any set of objects. To formalize this as-
sumption, we define a notion of domain for an operation specification OpSpec which is any set
of objects D s.t. there is an event e € Events[OpSpec]| for which obj(e) = D. We assume that
domains are “symmetric”, i.e. if D is a domain for OpSpec, then for every pair of objects x € D and
y € Objs\ D, the set D’ = D\ {x} U{y} is also a domain for OpSpec. If OpSpec allows single-object
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read/write/read-write events (defined as in Section 4.2), we assume that for every object x, there
exists a read/write/read-write event whose domain is {x}. Also, we assume that if OpSpec allows a
multi-object read/write/read-write event e such that obj(e) is a finite set of size at least 2, then for
every non-empty finite set D C Objs, D is a domain of a read/write/read-write event in OpSpec.
Correctors. In addition, we assume that if OpSpec permits conditional read-write events—which
write to a set of objects X based on values they read (possibly from other objects) in some context-
then any execution can be extended with some conditional read-write event e that writes to every
object in X, modulo a so-called correction defined below. This property is only relevant for events
with |obj(e)| > 1 (and therefore, irrelevant for basic storage specifications). Our proof will rely on
the existence of such extensions.

Example 7.12. To provide some intuition about the need for corrections, consider a specification
formed of prefix consistency (PC) and an operation specification with two multi-object operations,
InsAbs and DelPre, under Last-Writer-Wins (LWW) conflict resolution (i.e., the read specification
selects the maximal invocation from the context w.r.t. ar) (see Appendix A.4). InsAbs(X,v) checks
for every object x € X if it is present, and inserts it with value v if not, and DelPre(X) deletes every
object x € X as long as it was present.Assume an abstract execution &, and an event e from & whose
context implies that x is absent and y is present. If e is an invocation of InsAbs (resp., DelPre), then it
can not write both objects since x is absent and y is present.

We introduce the notion of corrector, a set of auxiliary events that modify the context, ensuring
the existence of an event that can write to both objects. For instance, in the scenario presented
in Example 7.12, if e is an invocation of InsAbs({x,y}, 1), the corrector will add a DelPre({y})
invocation in its context, so both objects are absent.

We start by defining some notations. Let Spec = (CMod, OpSpec) be a storage specification,
& = (h,rb, ar) an abstract execution of a history h = (E, so, wr), and e € E an event. A correction

of e in & with an event g, denoted by & V e, is an abstract execution & = (K, rb’,ar’") associated
to a history ' = (E U {a}, so’, wr’) obtained by adding a as the immediate rb-predecessor and
ar-predecessor of e. If rep(e) = rep(a), then a is also the immediate so-predecessor of e. The
write-read dependencies (wr™!) of every event in £ remain the same. Multiple corrections exist
because the write-read and receive-before dependencies of a are not constrained. This allows
flexibility on correcting & while preserving validity w.r.t. Spec.

- s
The correction of ¢ with a sequence of events s = (ay, a, . ..), denoted by £ V e, is defined as
expected, by iteratively correcting ¢ with all events in S in the order defined by §. Therefore, if €’ is

the immediate ar-predecessor of e in &, the ar order in & v e will have ay, ay, . .. inserted in between
e’ and e (in this order). Similarly for rb and possibly for so.

For a (partial) mapping f : A — B and a total order < over A, the sequence of elements
in B mapped by f and ordered according to < is denoted by seq_(f). Formally, seq_(f) =
(f(a1), f(az),...) such that f(a;) | and a; < a;4; for all i. We omit the subscript < when it is
understood from the context.

Also, if ¢ is an abstract execution, then £ ®e is an abstract execution obtained from & by appending
e to & as the last event w.r.t. ar.

Corrector Assumption. If OpSpec allows conditional read-writes, then we assume that for every
domain D, W C D, x € Objs s.t. x € W if W # (), and abstract execution &, there exists

(1) a conditional read-write e with obj(e) = D which is not contained in &, and
(2) a partial mapping a : D \ {x} — Events called execution-corrector for event e in an abstract
execution & @ e.
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We define execution-correctors as follows.

Definition 7.13. Let Spec = (CMod, OpSpec) be a storage specification, £ an abstract execution, e a
conditional read-write event from & with obj(e) = D, W C D a set of objects, and x € D an object s.t.
x € WifW # 0. Also, let < be a fixed total order on the set of objects. An execution-corrector for
(e, W, x, &) is a partial mapping a : D \ {x} — Events such that if
, seq(a) , seq(aly)
§ :§ v eand§ Ty=(§ Y e)\{e} where a Fy=a r{zeDom(a)lzsy}>
then the following hold:

(1) foreveryy € D\ {x}, ifa(y) is defined and the correction up to a(y) is valid w.r.t. Spec, then
a(y) writes only y in the correction: ifa(y) | and & | y is valid w.r.t. Spec, then for every object
z € Objs, wspec(a(y))(z, [¢' | y,CMod]) | iff z =y, and

(2) for everyy € D, if the correction is valid w.r.t. Spec, then e reads y and additionally, e writes y
only ify € W, i.e, rspec(e)(y, [£', CMod]) # 0 and wspec(e)(y, [¢’,CMod]) | iffy € W.

Example 7.14. We illustrate execution-correctors for the storage specification presented in Exam-
ple 7.12, with InsAbs and DelPre as operations and PC as consistency model.

Let & be an abstract execution, e a DelPre(D) event from &, W C D a non-empty set of objects and
x € W. For every object y, let w, be the last event from the “read” context of e w.r.t. PC which writes
y (by read context we mean the set of events selected by rspec from the context). In the following we
assume that wy is an insert event. Note that if wy is a delete event, then there exists no execution-
corrector for e (intuitively, the correction concerns objects different from x, and DelPre(D) will not
delete an object which is already deleted).

An execution-corrector for (e, W, x, £) is the mapping a : D \ {x} — Events defined below. The
mapping a observes the update on y made by w, and overwrites it when necessary. Thus, when e
reads y, y is present iffy € W.

InsAbs({y},v) ify € W and wy deletesy in &
a(y) =4 DelPre({y}) ify¢ W andw, insertsy in & (21)
undefined otherwise

Observe that requiring that a is defined for all objects in D is too strict: if the read specification
has a layer-bound of 1 and the events read a single object (as faacas), any correction will change
the entire context read by e.

8 The Arbitration-Free Consistency Theorem

We now present our main result in its most general form, which extends Theorem 6.3.

THEOREM 8.1 (ARBITRATION-FREE CONSISTENCY (AFC)). Let Spec = (CMod, OpSpec) be a storage
specification. The following statements are equivalent:

(1) CMod is arbitration-free w.r.t. OpSpec,

(2) there exists an available OpSpec-implementation.

The proof of (1) = (2) is very similar to that in Theorem 6.3 (see Section 6.1). The only difference
is replacing Lemma 6.5 with Lemma 7.11 where we use the maximally-layered assumption of read
specifications. For the reverse, we follow the reasoning explained in the beginning of Section 6.2 to
reduce to consistency models in normal form. Lemma 8.2 extends the arguments in Lemma 6.7 to
generalized storage specifications.

Lemma 8.2. Let Spec = (CMod, OpSpec) be a storage specification. Assume that CMod contains a
simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for somei,0 < i < len(v),
Rel! = ar. Then, there is no available (CMod, OpSpec)-implementation.
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Fig. 9. Abstract execution of a trace without receive actions for the visibility formula v. A;Cl represents a
sequence of events af’ (y),y e obj(e;c’) associated to an execution-corrector. The auxiliary events in A;c’ allow
that, if (ex0 " i—l) € ar,wrCons}’((ego,.. €. n( )) holds, and thus Uxo(fz0 , I n( )) holds as well.

PrRoOF SKETCH. As in Lemma 6.7, we assume by contradiction that there is an available imple-
mentation Ir of Spec. We use the visibility formula v to construct a specific program, which by
the assumption, admits a trace (in the composition with this implementation) that contains no
receive action. We show that any abstract execution induced by this trace, which is admissible by
any available implementation of Spec, is not valid w.r.t. Spec. This contradicts the hypothesis.

Let dy be the largest index i s.t. Rel} = ar (last occurrence of ar). Then, v is formed of two parts:
the path of dependencies from ¢, to ¢4, which is not arbitration-free, and the suffix from ¢4, up to
€len(v), the arbitration-free part.

The program P that we construct uses two replicas ro, 1, two objects x, x; and a collection of
events e;',0 < i < len(v),! € {0,1}. The events are used to “encode” two instances of v, and vy;.
Replica r; executes first events efl with i < d, and then, events el’.("’ with i > d, - the replica r;
executes the non arbitration-free part of v for object x; and the arbitration-free suffix of v for x;_;.

For every [, the event el’;’n W) reads xq_;.
For ensuring that v, (e;’, . . . e,') holds in an induced abstract execution of a trace without receive

actions, we require that if Rel] = wr, then efﬁ | is a write event and ef’ is a read event. For ensuring
that wrCons (e, .. . elen(v)) holds in such an abstract execution, for each set E € P (e, . . . len(v))
s.t. conflict (E) occurs in v, we consider a distinct object yg, which is also distinct from x, and x;.
These objects represent each conflict in v in a distinct manner. Then, we require that events e;’
write to object yg iff ¢; € E and to object x; iff ¢; belongs to the set Ey s.t. conflict, (E,) occurs in
v (since v is conflict-maximal, there is only one occurrence of a conflict, predicate). In the case
ef’ is a conditional read-write, we add a set of events Af’ that form an execution-corrector so
conflicty(ey’, ... ei’n(v)) holds in an abstract execution of a trace without receive actions. These
additional events do not write on objects x, or x;.

Figure 9 exhibits a diagram of the abstract execution of the program.

The rest of the proof, which proceeds as follows, is a generalization of the proof of Lemma 6.7
which takes into considerations the assumptions we make about storage specifications:
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(1) There exists a finite trace ¢ of P || I that contains no receive action (Lemma C.5).

(2) The trace t induces a history h, = (E, so, wr) and an abstract execution &, = (h, rb, ar) where
rb = so. As I is valid w.r.t. Spec, &, is valid w.r.t. Spec. Next, we prove that since rb = so,
events in &, read the latests value w.r.t. so for any object. In particular, we deduce that &, is
valid w.r.t. (CC, OpSpec) (Corollary D. 5)

(3) Since ar is a total order, either (e p€._) €aror (e €. ;) € ar. Wlo.g., assume that
(ez" 1€, _,) € ar. By Proposition D 6 we deduce that ¢ e’ € ctxtxo (elen(v), [, CMod]). The
proof is explamed in Flgure 9:if (e €l € ar, then all events e;° form a path in such

way that vy, (eO S ) holds in §V If some event e ! is a conditional read-write event,

Ien(v)
the predicate conflict, (e0 | n(v
(4) Ase)’ € ctxtxo(e]en<v), [&, CMod]) but (ey°, Ien( )) ¢ rb (no message is received), we deduce
in Proposition B.16that OpSpec is layered w.r.t. ar. By contrapositive, if OpSpec would
be layered w.r.t. rb, as ef; € ctxtxO(e[ ()’ [&, CMod]), there would exist an event e s.t.
Ien(V))(xo, [&. CMod]). However, as rb = so, rep(e;’) = rep(e) =

(e,°,e) € rband e € rspec(e
rep(e[en( )) which is false because rep(e,°) = ro and rep(e;’

)) holds in &, thanks to the corrector events A",

)=

len(v

(5) Since rspec is maximally layered, we can show that the layer %)c))und of rspec is smaller than
or equal to the number of arbitration-free suffixes of v (Proposition B.17). Observe that an
event writes xo only if it is init or is an event ef’ s.t. & € Ex and I = 0. Any such index i
corresponds to a suffix of v. By causal suffix closure, for any arbitration-free suffix v’ of v
there is a visibility formula that subsumes " in nCModopspec. As dy is the maximum index
for which Rel} = ar, the number of events writing x in replica r; distinct from init coincide
with the number of arbitration-free suffixes of v. Hence, as rspec is layered wrt ar, if its
layer bound would be greater than the number of arbitration-free suffixes, e ( ) would
necessarily read x, from init (other events writing x, are in replica ry and e|en(v) only reads
from events in r1). However, as rspec is maximally-layered and eg" succeeds init w.r.t. ar and

rb*, we would conclude that e en(v) would also read x from e;°. However, this is impossible
as wr C rb = so but ¢;” is in rephca ro and elen(v) is in replica ry.

(6) Lastly, we show in Proposition B.18 that if the layer bound of rspec is smaller than or equal to
the number of arbitration-free suffixes of v, then v is vacuous w.r.t. OpSpec, which contradicts
the fact that v is a visibility formula from the normal form nCModopspec. ]

Corollary 8.3 is an immediate consequence of Theorem 8.1 and Lemma 6.4.

Corollary 8.3. Let OpSpec be an operation specification. The strongest consistency model CMod for
which (CMod, OpSpec) admits an available implementation is CC.

9 Related Work and Discussion

The CAP conjecture [13] claims that a distributed key-value store cannot be both consistent,
available and tolerate partitions. The proof of the CAP theorem [18], uses a so-called split brain
behavior, where two sets of replicas are isolated from each other, and a get (read) operation misses
the result of an earlier set (write) operation (which completes before the get starts). We remark that
our proof in section 2 actually extends the proof of the CAP theorem so it holds without the real
-time requirement used in the original proof [18].

As pointed by some critiques of the CAP theorem (e.g., [21]), the proof equates consistency with
atomicity of read / write variables. Moreover, network partitioning is a stand-in for end-to-end
delays in geo-distributed systems. The PACELC (if Partition then Availability or Consistency, Else
Latency or Consistency) theorem [1] (see [19]) captures these observations; its proof extends results
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proved for sequential consistency [8, 24]. These results are also proved for read / write variables,
capturing key-value stores. In the executions we construct, messages between replicas are delayed,
in a way that corresponds to split brain behavior, and our emphasis is on constructing the right
interaction sequences. We believe this behavior can be used to extend the AFC theorem so it talks
about latency, rather than availability, for the same interaction sequences.

The CALM (consistency as logical monotonicity) conjecture [20] relates monotonicity of queries
to lack of coordination. Informally, it states that a query has a coordination-free execution strategy
if and only if it is monotonic. In order to make this statement more concrete, it is necessary do
define what coordination freedom means. In their proof of the CALM theorem, Ameloot et al. [6]
equate coordination-freedom with the ability of clients to produce an output even when there is no
communication between replicas. The proof relies on a split brain behavior, somewhat similar to the
one used in the CAP theorem [18]. Extensions of this theorem [5] equip replicas with knowledge
of the data distribution. The CALM theorem is motivated, in part, by Bloom [4], a programming
language that encourages order-insensitive programming. The applications they present are to key-
value stores and to a shopping cart, essentially, a counter. Later work extends the CALM approach
to a programming environment for composing small lattices 4], and relates it to CRDTs [22].

One key challenge in deriving our result is considering abstract, generic consistency models,
while prior work considers specific models. The other challenge is to allow their composition
with abstract, generic shared objects, while prior work mostly consider key-value stores. On the
possibility side, this is facilitated by the relating arbitration-freeness to causality; the necessity side
relies on finding carefully-designed client interactions that “stress” dependencies between replicas.

Defining available implementations for causal consistency has been considered in several
works [9, 10, 25, 26]. The work of Attiya et al. [7] and Mahajan et al. [27] show that, in the
case of multi-value registers, consistency models stronger than causal consistency cannot support
available implementations. In [7] the condition is observable causal consistency (OCC) whereas
in [27] the condition is real-time causal consistency (RTC). The definition of both OCC and RTC
are specific to multi-value registers, and the impossibility result depends on several restrictions
that we do not consider. Both papers make some (nontrivial, but different) assumptions about the
implementations. Furthermore, both of them do not truly prove a tight result: while both [7, 27]
prove the positive result for CC, in [7], the impossibility is proved for OCC, and in [27] it is for RTC
(both stronger than CC). Besides handling a more general class of operations, the AFC theorem is a
strengthening of their results, as it applies to causal consistency and is therefore tight.

Our specification framework builds on previous work [11, 14, 15, 17]. Similarly to Burckhardt
et al. [14, 15], storage system specifications decouple consistency from the object semantics. We
re-use the same ideas of defining consistency using visibility formulas, contexts, and an arbitration
relation. Our object semantics is split into several semantical functions (rspec, extract, and wspec)
in order to be more general (modeling transactions), and be able to express “normal” constrains. The
extension to transaction isolation levels is similar to Cerone et al. [17] and Biswas and Enea [11].

The works of [11, 12] study the complexity of checking consistency under different scenarios.
There is no apparent relation between the complexity of checking consistency and the existence
of available implementations: the AFC theorem shows that Read Committed admits available
implementations but Sequential Consistency does not whereas [12] shows that checking consistency
of an SQL history under Read Committed (equivalent to Return-Value) or Sequential Consistency
is NP-complete (inclusion in NP is trivial for any model).
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A Examples of Operation Specifications

We present here several well-know operation specifications.

A.1 Key-Value Store with Fetch-And-Add and Compare-And-Swap Operations

The Key-Value Store with Fetch-And-Add and Compare-And-Swap (faacas) is an operation speci-
fication with four operations, PUT(x, v), that puts value v to object x, GET(x) that reads object x,
FAA(x,v) that reads the value v’ of object x and writes v” + v, and CAS(x, v,0’), that reads x and
writes v’ iff the value read is v.

The following equations, corresponding to Equations (11), (14) and (17), describe the operation
specification of faacas.

max,, E} ifr € {GET(x), FAA(x,0),CAS(x,v",v”")} and ¢ = (E, ar, rb
rspec(r)(x, ) :{ é) } other\j/ise( ) o) ( & ( : (22)
v if r € {GET(x), FAA(x,0),CAS(x,v,0’)} and R = {(w, v
extract(r)(x, R) = { undefined othervf/ise ) o) ( & (o) (23)
v’ if w = PUT(x,0")
v+0 if w = FAA(x, 0’
wspec(w)(x.0) =1 ° e Ao (24

undefined otherwise

The faacas is maximally layered w.r.t. ar, with 1 as its layer bound. As CAS is a single-object
conditional read-write operation, it trivially allows execution-correctors.

A.2 Key-Value Multi-Value Store

The Key-Value Multi-Value Store (k-mv) [7, 15] is an operation specification with two operations,
GET(x), reading multiple concurrent values on a single object x, and PUT(x, v), writing on a single
object x the value v.

The following equations, corresponding to Equations (12), (14) and (17), describe the operation
specification of k-mv.

max,, E} ifr =GET(x) and ¢ = (E, ar, rb
rspec(r)(x,¢) = { (E) = otherwise( : ( : (25)
) {ol (Lv) €eR} ifr=GET(x)
extract(r) (x, R) = { undefined otherwise (26)
| if w = PUT(x,0)
wspec(w)(x,_) = { undefined otherwise (27)

The k-v is maximally layered w.r.t. rb*, with 1 as its layer bound.

A.3 Distributed Counter

The distributed counter (counter) [15] is an operation specification with two operations, inc(x),
incrementing the value of x by 1, and rd(x), reading the amount of increments of x.

The following equations, corresponding to Equations (13), (16) and (19), describe the operation
specification of counter.

E ifr=rd(x)andc = (E ar,rb
rspec(r)(x,c) = : 0 otherwis(e ) (E,ar, rb) (28)
Rl -1 ifr =rd(x
extract(r) (x, R) = { Lnldeﬁned otherwis(e ) (29)
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1 if w=1inc(x)

undefined otherwise (30)

wspec(w)(x, ) = {
The counter is maximally layered w.r.t. ar, with oo as its layer bound.

A.4 Insert/Delete Last-Write-Wins

The Insert/Delete Last-Write-Wins (ins/del) is an operation specification with two multi-object
operations. InsAbs(X, v) checks for every object x € X if it is present, and inserts it with value v if
not, and DelPre(X) deletes every object x € X as long as it was already present.

Its operation specification is described as follows:

rspec(r) (x, ¢) = { émaxm. E} ifre { InsAbs(X,v),DelPre(X) },x € X and ¢ = (E, ar, rb)

otherwise
(31)
v if w € {InsAbs(X,_),DelPre(X)},x e XandR = {(_,0)}
extract(r) (x, R) = { undefined otherwise
(32)
v if w=1InsAbs(X,v') Av ="
wspec(w)(x,0) =1 T if w =DelPre(X) Aov # T (33)

undefined otherwise

where ¥ is a special value representing absence. We assume that InsAbs(X, ¥) is not defined.

The ins/del is maximally layered w.r.t. ar, with 1 as its layer bound. ins/del allows execution-
correctors: let CMod be a consistency model, £ be an abstract execution, D be a domain, W C D be
a set of objects and x be an object s.t. x € Wif W # 0.

Let be v the value that event e reads in €@ e. If v = f, we select e = InsAbs(D, _) while otherwise,
e = DelPre(D). The mapping a below is an execution-corrector for (e, W, x, £):

InsAbs({y},v") ifyeWAvy=T#0, oryg WAo,=F=0
a(y) =4 DelPre({y}) ifyeWAovy#7=0v,ory¢ WAo, #1#0 (34)
undefined otherwise

where v, = wspec(e,,)(y, [£, CMod]) and e, is the maximal event w.r.t. so on the same replica as e.

A.5 Non-Transactional SQL with Last-Writer-Wins Store

The Non-Transactional SQL with Last-Writer-Wins Store (simple-SQL) is an operation specification
modelling SQL-like databases [2]. Each object represents a row identifier and the set of values is
defined abstractly as Rows. Rows contain a special value denoted ft, different from L, indicating
that the row is deleted.

This operation specification employs four operations: INSERT, SELECT, UPSERT and DELETE. Each
operation has a finite set of objects D as domain. INSERT(R) inserts in the database each row r
on an object d € D using the mapping R : D — Rows. SELECT(p) selects the rows on the storage
satisfying the predicate p : D X Rows — {false, true}. UPSERT(p, U) updates the rows that satisfy
p using the mapping U : D X Rows — Rows, inserting them if they are absent. Finally, DELETE(p),
deletes the objects satisfying the predicate (i.e. replaces its row by T). We assume that in for any
predicate p and object x, p(x, T) = false.

{max,, E} ifr € {SELECT(p), UPSERT(p, U),DELETE(p)} and ¢ = (E, ar, rb)
0 otherwise

rspec(r)(x,c) = {
(35)
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if r € {SELECT(p), UPSERT(p, U), DELETE(p)},
R = {(w,v)} and py(v) (36)
undefined otherwise

extract(r)(x,R) = ¢

R(x) if w = INSERT(R)
_} Ux(o) if w = UPSERT(p, U)
wspec(w)(x,0) =) if w = DELETE(p) A v ¢ {L, 7} (37)

undefined otherwise

The simple-SQL is maximally layered w.r.t. ar, with 1 as its layer bound. simple-SQL allows
execution-correctors: let CMod be a consistency model, & be an abstract execution, D be a domain,
W C D be a set of objects and x be an object s.t. x € W if W # 0.

Let be v the value that event e reads in & ® e. We select the event e = UPSERT(pp w, Up), where
pp,w and Up are defined below.

true ifdeWw
ppw(d,r) =1 false ifde D\ W
undefined otherwise
r ifd e D

Up(d,r) ={

undefined otherwise

For such event, we define the execution-corrector a : D \ {x} — Events as the totally-undefined
mapping, i.e. the function that no object y € D is associated with some event.

A.6 Transactional SQL Multi-Value Store

The Transactional SQL Multi-Value Store (SQL-mvr) is an operation specification modelling SQL-
like databases using transactions. Each object represents a row identifier and the set of values, Rows,
is defined as in Appendix A.5.

Transactions are blocks of simple instructions that are executed sequentially. Transactions start
its execution by selecting a snapshot of the database (i.e. a mapping associating each object a
constant value) from which operations can read. Each instruction may execute a writing operation,
but its effect it is only viewed internally. After their completion, the writing effects of the transaction
can be seen by other transactions; giving the impression of atomicity.

We model the store with the aid of a unique operation, TRANSACTION(body) that reads the
snapshot of the database and then executes the instructions declared in C. C is defined as a sequence
of five type of operations: INSERT, SELECT, UPDATE and DELETE. Each operation has a finite set
of objects D as domain. INSERT(R) inserts in the database each row r on an object d € D using
the mapping R : D — Rows. SELECT(p) selects the rows on the storage satisfying the predicate
p : D X Rows — {false, true}. UPDATE(p, U) updates the rows that satisfy p using the mapping
U : D X Rows — Rows. Finally, DELETE(p), deletes the objects satisfying the predicate (i.e. replaces
its row by ). abort represents states declared by the user where the transaction should not execute
any more instructions and any declared write should be aborted. We assume that in for any predicate
p and object x, p(x, 1) = false.

We model snapshots as mappings Objs — Vals. Unlike in Appendix A.5, SQL-mvr requires
that local effects of SQL-like instructions are only seen internally, during the execution of the
transaction. Such effects are modelled in Equation (38) as a recursive function that simulates the
transaction execution w.r.t. a concrete object. The function exe executes one instruction at a time,
and it stops whenever all instructions are executed, indicating that the execution was correct, or
halting it midway in case some abortion occurred (modelled with the constant value _L).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 41. Publication date: January 2026.



Arbitration-Free Consistency Is Available (and Vice Versa) 41:33

exex(body’,0’) if body = e;body’, o’ = exly(e, o) and o’ # (L, false)
exex(body,0) =§ ¢ if body = 0 (38)
(L, false) otherwise
The behavior of each instruction is modelled in Equation (39), updating the snapshot in object x
in a similar way as wspec does in Appendix A.5, and indicating if the event e indeed wrote object x.

(o, W) if e = SELECT(p)
(o, w) if e = DELETE(p) A —px(0)
(, true) if e = DELETE(p) A px(0)
_ (o, W) if e = UPDATE(p, U) and either —p, (o) or Uy (o) T
exle(e. (W) =\ (U (o), true) if e = UPDATE(p, UY, px(c) A Us(c) 1
(o, W) if e = INSERT(R) AR(x) T
(R(x),true)  ife = INSERT(R) AR(x) |
(L, false) if e = abort
39
The operation specifications of SQL-mvr are an adaptation of those of k-mv:
_ | {max,, E} ifr = TRANSACTION(body) and ¢ = (E, ar, rb)
rspec(r) (x, ¢) = { 0 otherwise (40)
_ | o if r = TRANSACTION(body), o = {(v, false) | (w,v) € R}
extract(r)(x,R) = { and o’ = exex (body, ) (41)
o if r = TRANSACTION(body), and o = (v, true)
wspec(w)(x, 0) = { undefined otherwise (42)

The SQL-mvr operation specification is maximally layered w.r.t. rb*, with 1 as its layer bound.
SQL-mvr allows execution-correctors: let CMod be a consistency model, £ be an abstract execution,
D be a domain, W C D be a set of objects and x be an object s.t. x € Wif W # 0.

We define e = TRANSACTION(SELECT(pp); INSERT(Ry)), where py and Up are defined below.

(dr) = true ifd e D

PDIET) =1 yndefined otherwise
_ ifd e D

Ry (d) = { undefined otherwise

where _ indicates some arbitrary unspecified value.
For such event, we define the execution-corrector a : D \ {x} — Events as the totally-undefined
mapping, i.e. the function that no object y € D is associated with some event.
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B Normal Form of a Consistency Model w.r.t. an Operation Specification

In this section, we prove the existence of a consistency model in normal form equivalent to a given
one (Theorem B.1), and we show as well that arbitration-freeness is well-defined (Theorem B.9), i.e.
that either all its normal forms are arbitration-free or none.

For compare consistency models when restricted to an operation specification OpSpec, we
introduce the notion of OpSpec-equivalence. Two consistency models CMod;, CMod, are OpSpec-
equivalent, denoted CMod; =gpspec CMody, if for every abstract execution of OpSpec, &, ¢ is
valid w.r.t. (CMody, OpSpec) iff £ is valid w.r.t. (CMod,, OpSpec). In particular, if CMod; and
CModj; are equivalent, they are also OpSpec-equivalent. The converse is not true: vacuous visibility
formulas under an operation specification OpSpec may not be vacuous for every possible operation
specification.

B.1 Existence of a Normal Form of a Consistency Model

Theorem B.1 states the existence of a normal form of a consistency model w.r.t. OpSpec.

THEOREM B.1. Let OpSpec be an operation specification. For every consistency model CMod, there

exists a consistency model that is in normal form w.r.t. OpSpec and that is OpSpec-equivalent to
CMod.

The proof of such result is divided in three parts, proving the existence of a consistency model
with only simple visibility formulas (Lemma B.4), proving that such model can be refined for
removing vacuous visibility formulas (Lemma B.7) and finally, showing that conflict-maximality
can be assumed without loss of generality (Lemma B.8).

Monotonicity

Maximally-layered operation specifications are monotonic. Intuitively, an operation specification
is monotonic if (1) the values that are not read under a consistency model CMod; should be also not
read under a stronger model CMod,, and (2) whenever some values are read under a consistency
model CMod; but not under a stronger one CMod;, some other values must be read under CMod,
which were not visible under CMod;.

Definition B.2. Let OpSpec = (E, rspec, extract, wspec) be an operation specification. OpSpec is
called monotonic if for every pair of consistency models CMod;, CMod,, CMod; < CMody, abstract
execution £, event r € £, and object x the following hold:

(1) rspec(r)(x, [£,CMod;]) - rspec(r)(x, [£,CMod;]) U (ctxte(r, [, CModz]) \
ctxty (r, [£, CMod1])).

(2) if rspec(r)(x, [£,CMod1]) \ rspec(r)(x, [£,CMod;]) # 0, then rspec(r)(x, [¢,CModz]) \
ctxty(r, [£, CMod;]) # 0

Lemma B.3. A maximally-layered operation specification is monotonic.

Proor. Let OpSpec be a maximally-layered operation specification, CMod;, CMod;, be two
consistency models s.t. CMod; < CMody, & be an abstract execution, r be an event in £ and x be an
object. Observe that by the unconditional read property of OpSpec (Property 2 of Definition 7.4),
we can assume w.l.o.g. that r is a read event.

On one hand, we observe that if the layer bound of OpSpec is co, OpSpec is trivially mono-
tonic: as r is a read event and the layer bound of OpSpec is oo, rspec(r)(x, [, CMod,]) =
ctxty (r, [£, CMod;]) and rspec(r)(x, [£,CMod;]) = ctxt,(r, [, CMod;]). Using the fact that
ctxty(r, [£,CMod;]) C ctxty(r, [, CMod,]), is easy to see that Properties 1 and 2 hold in this
case.
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On the other hand, if the layer bound of OpSpec, k, is finite, let R be the relation for which OpSpec
is k-maximally layered. For proving Property 1 of Definition B.2, let us partition ctxt, (7, [£, CMod;])
in the three disjoint sets C;, C; and Cs described in Equation (43).

C1 = rspec(r)(x, [¢,CMod;])
Cy = ctxte(r, [, CMod ]) \ rspec(r)(x, [, CMod,]) (43)
Cs == ctxte(r, [, CMod;]) \ ctxty(r, [£,CMod,])

We note that by Property 1 of Definition 7.4, rspec(r)(x, [£, CMod]) C ctxt,(r, [£, CMod;]). As
CMod; < CMod,, we deduce that rspec(r)(x, [£, CMod;]) C ctxt,(r, [£, CMod2]); so {Cy, Cs, C3}
is indeed a partition of ctxt,(r, [£, CMod;]). Observe that showing Property 1 of Definition B.2
is equivalent to show that rspec(r)(x, [£, CMod;]) € C; U Cs. By Property 1 of Definition 7.4,
rspec(r)(x, [£,CMod,]) C ctxt,(r, [£, CMod;]) = C; UC, U Cs. We conclude the result by showing
that C, N rspec(r)(x, [£, CMod,]) = 0.

For showing it, we observe that the layer of an event w in ctxt, (r, [£, CMod,]) is less or equal than
the layer of w in ctxt, (r, [£, CMod;]): as ctxt, (r, [£, CMod;]) C ctxt,(r, [£, CMod;]), every chain
of events in ctxty (r, [, CMod;]) containing w and ordered w.r.t. R belongs to ctxt,(r, [£, CMod;]).
Thus, as OpSpec is maximally layered, an event w in C; does not belong to rspec(r)(x, [£, CMod3]):
if w € G, its layer in ctxty(r, [, CMod;]) is greater than k; so it is also greater than k in
ctxty (r, [£, CMod,]). Hence, as OpSpec has k as layer bound, w ¢ rspec(r)(x, [£, CMod;]).

For proving Property 2, we observe that if there exists an event w € rspec(r)(x, [£, CMod;]) \
rspec(r)(x, [£, CMod;]), then the layer of w in ctxt, (7, [, CMod;]) is greater than k. Let k” be
the layer of w and let {ei}f;l be a chain of R of length k’ s.t. e, = w. As the layer of w in
ctxty(r, [£,CMod;]) is k and R is a partial order, there exists an event e;,1 < i < k s.t. ¢; € C5. We
observe that as the layer of w is k, the layer of event e; is i. Hence, as rspec is k-maximally layered,
we conclude that e; € rspec(r)(x, [§, CMod;]) \ ctxty(r, [£, CMod4]). o

Lemma 7.11 shows that for maximally-layered operation specifications, ensuring a strong consis-
tency criteria is enough for ensuring a weaker one. The proof relies on the fact that maximally-
layered operation specifications are monotonic (Lemma B.3).

Lemma 7.11. Let OpSpec be a maximall-layered operation specification and let CMod;, CMod; be
a pair of consistency models such that CMody is stronger than CMod;. Any abstract execution valid
w.r.t. (CMody, OpSpec) is also valid w.r.t. (CMody, OpSpec).

Proor. Let h = (E, so, wr) be a history and let CMod; and CMod; be two consistency models
s.t. CMod; < CMod;. Let also & = (h, rb, ar) be an abstract execution that witness the validity of
h w.rt. (CMod,, OpSpec). To prove that ¢ also witnesses h’s validity w.r.t. (CMod;, OpSpec),
by Definition 7.8, it suffices to prove that for every event r € h and object x, wr;!(r) =
rspec(r)(x, [£, CMod,]).

o wr;1(r) C rspec(r)(x, [£,CMod;]): Let w be a write event in wr;!(r). As (w,r) € wry,
w € ctxte(r, [, CMod,]). Moreover, as & witnesses h’s validity w.r.t. CMod,, wr;!(r) =
rspec(r)(x, [£, CMod,]). Hence, as w € rspec(r)(x, [£, CModz]) N ctxt,(r, [£, CMod]), by
Property 1 of Definition B.2, w € rspec(r)(x, [, CMod;]).

e wr l(r) 2 rspec(r)(x, [§,CMod;]):  Let w € rspec(r)(x, [£,CMod;]) s.t.
w & rspec(r)(x, [§,CModz]). By property 2 from Definition B.2, there ex-
ists w € rspec(r)(x, [£,CModz]) st. w ¢ ctxty(r,[£,CMod;]). However, as
rspec(r)(x, [£,CMod,]) = wrl(r) C ctxty(r, [§, CMod;]), this is impossible. There-
fore, rspec(r)(x, [£, CMod;]) C rspec(r)(x, [£, CMod;]) = wr;!(r). )
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An immediate consequence of Lemma 7.11 is the following result.

Lemma 6.5. Let OpSpec be a basic operation specification, and let CMod;, CMod, be a pair of
basic consistency models s.t. CMod, is weaker than CMod;. Any abstract execution valid w.r.t.
(CMody, OpSpec) is also valid w.r.t. (CMod;, OpSpec).

Simple Form
For proving Theorem B.1, we first prove the existence of a consistency model in simple form (i.e.
a consistency model with all its visibility formulas are simple) that is equivalent to CMod.

Lemma B.4. For any consistency model CMod, there exists a consistency model in simple form that
is equivalent to CMod.

Intuitively, the proof of Lemma B.4 is as follows: we first unfold union and transitive closure
operators, and then trim id and compositional operators to obtain a consistency model in simple
form. As an intermediate step, we define the consistency model obtained after unfolding union
and transitive closure operators. Such consistency model is the almost simple form of CMod,
almost(CMod), and it is described as the union of the almost simple form of each of its visibility
formulas, i.e. almost(CMod) = U eccmod @lmost(v). A visibility formula a belongs to the almost
simple form of a visibility formula v, a € almost(v) if (1) len(v) = len(a) and (2) for every
i,1 <i<len(v), Rel{ € o(Rel}); where o(Reli®) is the set of relations described as follows:

{R} if R = id, so, wr, rb or ar
BEOIEG) ifR=SUT
TR =1 5(s);0(T) ifR=S:T (44)

Uketakz10(S)¢  if R=8*
where the composition of two sets of relations A, B is defined as A; B := {a;b | a € A,b € B}.
We prove that CMod and almost(CMod) are equivalent.

Proposition B.5. For any consistency model CMod, CMod and almost(CMod) are equivalent.

Proor. For proving the result, we show that for any abstract execution &, object x and event r,
ctxty (r, [£, CMod]) = ctxt,(r, [ almost(CMod)]). In particular, it suffices to prove that for every
visibility formula v € CMod and event w, v, (w, r) holds in & iff there exists a visibility formula
a € almost(v) s.t. ax(w,r) holds in £. Observe that for every a € almost(v), len(v) = len(a); so we
reduce the proof to show that for every pair of events e, e’, (e, ¢’) € Rel; iff there exists R” € o(Rely)
s.t. (e,e’) € R.

In the following, we prove that for every relation R over pair of events obtained by the grammar
described in Equation (3), the following holds: (e, e’) € R iff there exists R” € o(R) s.t. (e,e’) € R’.
We show the result by induction on the depth of R°. The base case, when the depth of R is 0, refers
to the case R = id, so, wr, rb, ar. In such case, the result immediately holds by the definition of o(R).

Let us assume that for any relation of depth at most n the result holds, and let us prove that for
relations of depth n + 1. Three alternatives arise:

e IfFR=SUT, (e,¢’) € Rifand only if (e,e’) € S U T. By induction hypothesis on both S and
T, (e,e’) € SUT iff there exists R” € o(S) U a(T) s.t. (¢,¢’) € R’. Finally, by Equation (44),
we conclude that there exists R” € o(S) U o(T) s.t. (e,e’) € R’ if and only if there exists
R" € 6(R) s.t. (e,e’) € R'.

o IfR=S;T,(e,e’) € Rifand only if (e, e’) € S; T. By the definition of composition, (e,e’) € S; T
iff there exists ¢’ s.t. (e,e’’) € S and (e”,¢’) € T. By induction hypothesis on both S

By depth of R we mean the depth of the tree obtained by deriving R using Equation (3).
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and T, there exists e”’ s.t. (e,e’’) € S and (e”,e’) € T iff there exists ¢’ and relations
S € a(S), T € o(T) e’ s.t. (e,e’”) € S’ and (e”,¢’) € T'. By the definition of o(S); o(T),
we observe that there exists e’ and relations S’ € ¢(S),T" € o(T) €” s.t. (e,e”’) € S’ and
(e”,e”) € T’ iff there exists relation R” € ¢(S;T) s.t. (e,e’) € R’. Finally, by Equation (44),
we conclude that there exists relation R” € o(S;T) s.t. (e,e’) € R’ if and only if there exists
R" € 6(R) s.t. (e,€e’) € R'.

o If R =S* (e,€’) € Rif and only if there exists k € N* s.t. (e, e’) € Sk, By the previous point,
there exists k € N* s.t. (e, e’) € S¥ if and only if there exists k € N* and relation S’ € o(S)*
s.t. (e,e’) € S’. Finally, by Equation (44), we conclude that there exists k € N* and relation
S’ € 0(S)* sit. (e,€’) € o(S)* if and only if there exists relation R’ € o(R) s.t. (e,e’) € R’.

[m}

Obtaining a consistency model in simple form from a consistency model in almost simple form
is straightforward: every visibility formula is transformed by splitting composed relations into
simpler subrelations and omitting id by merging two existentially quantified events. Lemma B.4
formally describes such procedure.

Lemma B.4. For any consistency model CMod, there exists a consistency model in simple form that
is equivalent to CMod.

Proor. We construct a consistency model, simple(CMod), that is in simple form and it is equiv-
alent to CMod. The model is formally defined as follows:

simple(CMod) = {simple(a) | a € almost(CMod)} (45)
where simple(a) is the simple visibility formula of a.

The simple visibility formula of a visibility formula in almost form a is the visibility formula f
obtained by supressing id and compositional operators. Formally, f is the visibility formula s.t. (1)
len(f) = le.inl(a) count(Rel?) and (2) for every i,1 < i < len(f), ReI{ = rel(Rel4, i — k;); where j
is the maximum index s.t. k; < iand k; = {=1 count(Rel}), and count and rel are the functions
described in Equation (46) and Equation (47) respectively.

The function count counts the number of additional quantifiers the correspondant simple form
requires:

0 ifR=1id
count(R) =4 1 if R = so, wr, rb or ar (46)
count(S) + count(T) ifR=S;T

Also, the function rel, given a relation using compositional operator and an index i, returns the
i-th component:

R if R = so, wr, rb or ar
rel(R,i) =4 rel(S,i) if i < count(S) (47)
rel(T,i — count(S)) otherwise
By construction, simple(CMod) is in simple form. Clearly, simple(CMod) is equivalent to
almost(CMod). Then, thanks to Proposition B.5, we conclude that simple(CMod) is equivalent to
CMod. O

Removing Vacuous Visibility Formulas

After proving the existence of a consistency model CMod in simple form equivalent to a given
one, we show how to transform it for obtaining an equivalent consistency model CMod without
vacuous visibility formulas (Lemma B.7). We say that any such consistency model is in basic normal
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form, extending Definition 6.1 to any consistency model whose visibility formulas are described
using Equation (7).

The following result, key to prove Lemma B.7, it is a simple consequence of Definition B.2 and
Lemma B.3.

Proposition B.6. Let OpSpec be a maximally-layered operation specification, and let CMod;, CMod,
be two consistency models s.t. CMod; Zopspec CMod; but CMod; < CMod,. There exists an ab-
stract execution & valid w.r.t. CMody, an object x and events w,r s.t. w € rspec(r)(x, [£, CMod,]) \
ctxty (r, [£,CMod4]).

Proor. First of all, as CMod; #opspec CMod; but CMod; < CMody, by Lemma 7.11, there exists
an abstract execution ¢ valid w.r.t. CMody, an object x and an event r s.t. rspec(r) (x, [£, CMod,]) #
rspec(r)(x, [£, CMod;]). Thus, either rspec(r)(x, [£, CModz]) \ rspec(r)(x, [£, CMod;]) # 0 or
rspec(r)(x, [£, CMod]) \ rspec(r)(x, [£, CMod,]) # 0.

On one hand, if rspec(r)(x, [£, CMod,]) \ rspec(r)(x, [£,CMod;]) # 0, by Property 1 of
Definition B.2, then rspec(r)(x, [£, CMod,]) \ ctxt,(r, [, CMod;]) # 0. On the other hand,
if rspec(r)(x, [£,CModq]) \ rspec(r)(x, [£,CMod;]) # O, by Property 2 of Definition B.2,
rspec(r)(x, [£, CMod;]) \ ctxty(r, [¢, CMod;]) # 0. O

Lemma B.7. Let OpSpec be an operation specification. For every consistency model CMod in simple
form, there exists a OpSpec-equivalent consistency model, bnCModopspec, that is in basic normal
form w.r.t. OpSpec.

Proor. To prove the result, we construct a consistency model in basic normal form w.r.t. OpSpec,
bnCModopspec, that is OpSpec-equivalent to CMod. Without loss of generality we can assume that
CMod is ordered. Let a be an ordinal of cardinality |CMod|. We denote by v?,0 < i < a to the i-th
visibility formula in CMod’.

We construct a sequence of nested consistency models CModi,0 < k < « s.t. (1) CModg
is OpSpec-equivalent to CMod, (2) CMody is more succinct than CMod; (i.e., for every i < k,
o' € CMody iff o' € CMod; and for every i > k, o' € CMody), and (3) the first k visibility formulas

of CMody, are simple and non-vacuous w.r.t. (CMody, OpSpec) (i.e., for every i,0 < i < k, if
o' € CMody, then CMody \ {Ui} F0pSpec CMod).

We construct such sequence using transfinite induction. The base case, k = 0, corresponds to
CMody = CMod, which trivially satisfies (1), (2) and (3). For the successor case, let us assume
that the property holds for the consistency model CMody, and let us prove it for CMody,. If
CMody \ {v%} =0opspec CMod, we denote CMody,; as CMody \ {v*}; and otherwise, CModj,; =
CMOdk.

Clearly, by construction of CMody,1, (1) and (2) immediately hold. For proving (3), we ob-
serve that if o' € CModj.1, o' € CMod;. In such case, CMod; \ {v'} #opspee CMod. Hence, by
Lemma 7.11, there exists an abstract execution valid w.r.t. (CMod; \ {v'}, OpSpec) that is not
valid w.r.t. (CMod, OpSpec). As CModi;; € CMod;, CMody, \ {0’} € CMod; \ {0’} and hence,
CModg41\ {0'} < CMod;\ {0'}. Therefore, by Lemma 7.11, £ is valid w.r.t. (CModg,1 \ {0'}, OpSpec).
Thus, as ¢ is not valid w.r.t. (CMod, OpSpec), CMod.1 \ {0’} Zopspec CMod; so we conclude (3).

For the limit case, we define CMody as the intersection of all consistency models CMod;, i < k.
We observe that in this case, (2) immediately holds by construction of CMody.

For proving (3) we observe that o' € CMody iff o € CMod;. In such case, CMod; \ {0} Z0pSpec
CMod; so by Lemma 7.11, there exists an abstract execution & valid w.r.t. (CMod;\ {v'}, OpSpec) that

"Without loss of generality, we can assume that limit ordinals in « are not associated to a visibility formula.
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is not valid w.r.t. (CMod, OpSpec). Similarly to the inductive case, we deduce using Lemma 7.11 that
& is valid w.r.t. (CMody \ {0'}, OpSpec). Therefore, we conclude that CMod; \ {0’} Zopspec CMod.

For proving (1), we reason by contradiction, assuming that CMody #opspec CMod and reaching
a contradiction. In such case, by Lemma 7.11 there exists an abstract execution & = (h, rb, ar) valid
w.r.t. (CModg, OpSpec) that is not valid w.r.t. (CMod, OpSpec). W.Lo.g., we can assume that ¢ is
minimal w.r.t. the number of events in it; and let len(£) the number of events in such execution.

For each event r € & we define an ordinal i(r), i(r) < k associated to every visibility formula
v, i < k that can be applied on £&. First, we note that for every pair of events, e, ¢’ and object x, if a
visibility formula vy (e, e”) holds in &, len(v) < len(€). Observe that there exists finite number of
visibility formulas v in CMod with at most length len(&): on one hand, for each j,1 < j < len(v),
Reljf is either so, wr, rb or ar. On the other hand, wrCons is defined as a conjunction of predicates
from a finite set. Thus, the number of possible visibility formulas v of length len(v) < len(¢) is
finite. Let i, be the biggest index of a visibility formula v’ € CMod s.t. len(v?) < len(&) and i < k;
and let i(r) = i, + 1. Observe that k is a limit ordinal, i(r) < k.

Let x be an object and r be an event in £ We show that ctxt,(r,[£,CMody]) =
ctxty (7, [£,CMod;(y]). As CModr © CMod;(y), ctxty(r, [£,CModi]) C ctxty(r, [£, CMod;(r]).
For showing ctxt,(r, [§, CMod;(,y]) C ctxtx(r, [§,CModi]), let w € ctxty(r, [£,CMod;(,)]). In
such case, there exists a visibility formula v’ s.t. o'(w,r) holds in & If i > k, by (2) o' € CMod.
Otherwise, i < i(r), so by (2), o' € CMod;. Observe that in this case, applying the induction hypoth-
esis (2) on every consistency model CMod;, j < k, ol € CMod;, we deduce that v’ € CMody.
Either way, we deduce that w € ctxt,(r, [, CModk]). In conclusion, ctxt,(r, [&, CModi]) =
ctxty (7, [£, CMod; ) ]).

We conclude a contradiction by showing that & is valid w.r.t. (CMod, OpSpec); which by assump-
tion it is not. Let e be the last event w.r.t. ar in £. For reaching such contradiction, as i(e) < k and
CMod;(e) =opspec CMod, it suffices to show that ¢ is valid w.r.t. (CMod; (., OpSpec). We show
that wr!(e’) = rspec(e’) (x, [£, CMod;(¢)]).

On one hand, if e’ = e, we note that ctxty (e, [§, CModk]) = ctxty (e, [£, CMod;(¢)]). As & is valid
w.r.t. (CMody, OpSpec), we conclude that rspec(e) (x, [£, CMod;(¢)]) = wri!(e).

On the other hand, if ¢/ # e, let & be the execution obtained by removing e from
£ By the minimality of £, & is valid w.rt. (CMod, OpSpec). By induction hypothesis (1),
CMod =qgpspec CMod;(e). Hence, & is valid w.rt. (CMod;(c), OpSpec). We thus deduce that
wryl(e’) = rspec(e’)(x, [£&, CMod;()]). In conclusion, CMody satisfies (1) and thus, the induc-
tive step.

Finally, we define bnCModopspec = CMod,. As CMod,, satisfies (1) and (3), it is a consistency
model OpSpec-equivalent to CMod composed of finite, non-vacuous w.r.t. (CMod,, OpSpec) visi-
bility formulas; so we conclude that it is a consistency model in basic normal form.

[m}

Conflict-Strengthening a Consistency Model

Lemma B.8. Let OpSpec be an operation specification. For every consistency model CMod in basic
normal form w.r.t. OpSpec there exists a OpSpec-equivalent consistency model that is in normal form.

Proor. We transform CMod to define nCModopspec, a consistency model in normal form that
is OpSpec-equivalent to CMod.

For every visibility formula v € CMod, we define v” as the visibility formula that only differs with
v on its conflict predicate. More specifically, we require that for every set E € P (e, . . . len(v)), We re-
quire that conflict (E) € v’ (resp. conflict,(E) € v’)iff (1) for every abstract execution ¢, every object
x and every collection of events ey, ... €jen(v) S-t. Ox (€, . .. €len(v)) holds in &,, there exists an object
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y # xs.t.ife; € E,0 < i < len(v), then wspec(e;)(y, [, CMod]) | (resp. wspec(e;)(x, [£, CMod]) |)
and (2) there is no strict superset of E satisfying (1). We define nCModopspec as the set containing
all such visibility formulas. For conclude the result, we first prove that nCModopspec =opspec CMod
for then deduce that nCModopspec is indeed a consistency model in normal form.

We show that nCModopspec =opspec CMod. On one hand, as every visibility formula o” enforces
more conflicts than v, nCModopspec < CMod. On the other hand, by the definition of v, for
every abstract execution &, object x and events w, r, if v}, (w, r) holds in &, v, (w, r) also holds in &.
Altogether, we conclude that nCModopspec =0pspec CMod.

To show that nCModopspec is a consistency model in normal form, we observe that by construc-
tion, every visibility formula v € nCModopspec is in simple form and it is conflict-maximal w.r.t.
OpSpec. Hence, it suffices to prove that every visibility formula o € nCModopspec is non-vacuous
w.r.t. nCModopspec.

Let o’ be a visibility formula of nCModopspec. Observe that by construction of nCModopspec,
nCModopspec \ {0’} = CMod \ {v}. Hence, as CMod \ {v} #opspec CMod, we deduce that
nCModopspec \ {2’} = CMod \ {0} #opspee CMod = nCModopspec- In other words, v’ is non-
vacuous w.r.t. (nCModopspec, OpSpec).

O

B.2 Arbitration-Free Well-Formedness

As described in Section 7.1, a consistency model is arbitration-free if a OpSpec-equivalent consis-
tency model in normal form is arbitration-free. In Theorem B.9, we present a result that states that
arbitration-free is well-defined, as either every OpSpec-equivalent consistency model in normal
form are arbitration-free or none.

Regarding notations, for a visibility formula v and i,0 < i < len(v) we denote hereinafter
conflictsOf (v, i) € P(P(eo, - - - €len(o))) to the sets of conflicts of ¢; in v, i.e. E € conflictsOf (v, i) iff
¢; € E and conflict (E) € v.

THEOREM B.9. Let OpSpec = (E, rspec, extract, wspec) be an operation specification and let CMod
be a consistency model. For every pair of consistency models in normal form ny, n, that are OpSpec-
equivalent to CMod, n; is arbitration-free iff ny is arbitration-free.

Proor. We prove the result by contradiction, assuming that there exists two consistency models
ni, nz in normal form, OpSpec-equivalent to CMod, but one of them arbitration-free and the other
one no. W.lo.g., we can assume that n, is arbitration-free and n; is not. On one hand, as n; is not
arbitration-free w.r.t. OpSpec, there exists a visibility formula v € n; s.t. v is not arbitration-free.
We construct an abstract execution that is valid w.r.t. (n;, OpSpec) but not valid w.r.t. (n,, OpSpec)
using v, reaching a contradiction.

First of all, observe that by Lemma 6.4, n; is weaker than CC. The abstract execution we construct
contains a collection events ey, . . . €jen()s.t. £ is valid w.r.t. (CC, OpSpec) and v (e, . . . len(0)) holds
on it; for some object x.

Let x be an object. For each set E € P (&, . . . €len(s)) We consider a distinct object yg, also distinct
from x. These objects represents each different conflict in v in an explicit manner.

We denote by Ex € P (e, ... €en(v)) to the set s.t. conflict,(Ex) € v. Also, for every i,0 < i <
len(v), we denote by X; to the set containing objects yg (resp. x) iff E € conflictsOf (v, i) (resp.
E, € conflictsOf(v, i)). We denote by X to the union of sets X;,0 < i < len(v).

For obtaining &, we construct a sequence of executions ¢,0 < i < len(v) inductively, starting
from an initial event init, and incorporating at each time a new event e;. We use the notation
h~! and £7! to describe the history and abstract execution containing only init respectively. We
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use the convention e_; = init, conflictsOf(v,—1) = Objs and X_; = 0_; = x (the usage of such
conventions will be clearer later).

For the inductive step, we assume that the abstract execution §i_1 = (K71, rb'1, ar™!) associated
to the history h™! = (E*~!,s0'™!, wri~!) contains events e_; ... e;_; and is well-defined (satisfies
Definition 3.4) and we construct the history A’ and the abstract execution &. First of all, we impose
the constraint that if i > 0, then r; = r;_ iff Rel] = so, and otherwise r; # r;,0 < j < i.

Also, we define a pair of special objects, x; and o;. The purpose of object %; is control the number
of events in & that write object x. Equation (48) describes X;; where choice is a function that
deterministically chooses an element from a non-empty set. The object o; is an object different from
objects x,yg, E € P (e, . .. €len(v)) and 0j, —1 < j < i that we use for ensuring that if Rel] = wr,
then (e;_1, e;) € wr.

)’Ei—l lel = 0
Xi=1 x if X; # 0 and x € X; (48)
choice (X;) ifX;#0andx ¢ X;

We select a domain D;, a set of objects W;, W; C D; that event e; must write, and a set of objects
C; C D; whose value needs to be corrected for e; in &;;; — in the sense of Definition 7.13. We
distinguishing between several cases:

e i=00r0<i<len(v) and Rel} # wr and conflictsOf (v, i) # 0: In this case, we select e; to

be a write event. If OpSpec only allows single-object atomic read-write events, we define
D; = X;; while if not, we consider a domain containing o0;_1, 0;, every object in X; but no
object from X \ X; nor objects 0;,0 < j < len(v), j # i —1,i. Observe that by Proposition B.10,
such domain always exist on OpSpec.

If there is an unconditional write event whose domain is D;, we define W; = D;. Otherwise,
we define W; = X; U {o;}.

0 < i < len(v), Rel} = wr and conflictsOf(v, i) # 0: In this case, by Proposition B.11, OpSpec
allows atomic read-write events. If OpSpec only allows single-object atomic read-write events,
we define D; = Xj; while if not, we consider a domain containing o;_1, 0;, every object in
X; but no object from X \ X; nor objects 0;,0 < j < len(v),j # i — 1,i. Observe that by
Proposition B.10, such domain always exist on OpSpec.

Similarly to the previous case, if there is an unconditional atomic read-write event whose
domain is D;, we define W; = D;. Otherwise, we define W; = X; U {o;}.

0 < i < len(v) and conflictsOf(v, i) = 0: In this case, by Proposition B.11, OpSpec allows
events that do not unconditionally write. If OpSpec allows read events that are not write
events, we select D; to be the domain of any such event and W; = 0. Otherwise, OpSpec
must allow conditional write events; so we select D; to be the domain of any such event,
W; = 0. Observe that in this case, thanks to the assumptions on OpSpec (see Section 7.4), we
can assume without loss of generality that whenever 0;_; € D;_1, 0;_1 € D; as well; while
otherwise, that x;_; € D;.

Finally we describe the event e; thanks to the sets D; and W;. If W; = D; and Rel} = wr, we
select an unconditional atomic read-write event whose domain is D;. If W; = D; and Rel] # wr, we
select an unconditional write event whose domain is D;. If W; = 0 and OpSpec allows read events
that are not write events, we select a read event whose domain is D;. Finally, if that is not the
case, we select a conditional write event e; s.t. obj(e;) = D; and s.t. an execution-corrector exists
for (e;, W;, X;, &1 @ ;). Such event always exists by the assumptions on operation specifications
(Section 7.4). W.lo.g. we can assume that e; happens on replica ;.
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For concluding the description of k' = (Es, so’,wr') and & = (K, rb, ar’), we use an auxiliary
history and abstract execution, h} = (E}, so}, wr}) and & = (hi, rb}, ar}) respectively. For describing
the write-read dependencies of e; in &), we define the context mapping ¢’ : Objs — Contexts,
associating each object y to the context ¢'(y) described in Equation (49).

o 1 1
(W) = (F'(Y)s 1Dty i (g 271 gy i) (49)

where F!(y) is the mapping associating each object y with the set of events described below:

{init} ifi=0o0rif0 <i<len(v) ARel; =ar

Fi(y) = i1 | wspec(e)(y, [1,¢C]) | and
{e e B (e,ei—1) € (rbi=1)*

} otherwise

Then, we define £ as the abstract execution of the history hi = (E}, sol, wr}) obtained by
appending e; to h and & as follows: E} contains E'~! and event e;. First of all, we require that
the relations so, wr}, rb} and ar{ contain so’™!, wr'™!, rb’! and ar’~! respectively. With respect
to event e;, we impose that e; is the maximal event w.r.t. so; among those on the same replica.
Also, e; is maximal w.r.t. wr as we define that for every object z, wr (e,) = rspec(e;)(z, ¢;(z)). For
describing rb!, we require that for every event e s.t. (e, ¢;) € so} (e e;) € rb'. Also, if Rel} = rb,
we impose that (e;_1,¢;) € rb. Finally, we require that for every pair of events e, e’ € E’ Lsit.
(e,¢’) e rb' ! and (¢, ¢;) € 50}, (e, €;) € rbl. With respect to ar), we impose that e; is the maximum
event w.r.t. ar in ;.

We use &, to construct &'. If event ¢; is not a conditional write event, & = & . Otherwise, if
event e; is a conditional write event, given W; and object x;, we select an execution-corrector for e;
w.r.t. (CC, OpSpec) and a;. W.lo.g., we assume that every event mapped by a; happens on replica
r;. Observe that by the choice of sets D; and Wj, and thanks to the assumptions on storages (see
Section 7.4), such event(s) are always well-defined.

In addition, we denote by C; to the set of objects we need to correct for e;. More specifically,
if ¢; is a conditional write-read, we denote by C; to the set of objects y s.t. a;(y) is defined, i.e.
Ci = {y € Objs | ai(y) |}. In the case e; is not a conditional write-read, we use the convention
Ci = 0. The set of events in & is the following: E' = E"™ U {e;} U yec;\(o,_,) @i(y). Observe that by
the choice of C;, the set E' is well-defined.

Concerning notations, we use ¢ @ a to denote the context obtained by appending a to the context
¢ = {E, rb, ar} as the rb-maximum and ar-maximum event.

. . . seq(a;) . .
From ¢, we define £' = §§ Vv ¢; as the corrected execution of ¢ and e; with events a;. For

describing &', we consider < to be a well-founded order over Objs. £’ satisfies the following:

e so': Let y € C;. We require that for every event e € E'™1, (e,a;(y)) € so’ iff rep(e) =r;,0 <
j < i. We also require that (init, a;(y)) € so’ and (a;(y), e;) € so’. Finally, we require that
for every objects y' € Ci,y’ <y, (a;(y'), a;i(y)) € so'.

e wr’: Let y be an object in C;. For every object z, if z € C; and z < y, we require
that (wrl)~1(a;(y)) = rspec(a;(y))(z,c'(z) ® a;(z)); while otherwise, we require that
(wri)‘l(a (y)) = rspec(a;(y))(=, ¢'(z)). We also require that for every object z,if z € Ci, then
(wrz) L(e;) = rspec(e;)(z,c'(z) ® a;(z)), while otherwise, (wrl)~!(e;) = rspec(el)(z c (z))

e rbi: Let y € C;. We require that for every object y € C; and event e s.t. (e, a;(y)) € so U wr’,
(e,a;i(y)) € rb’. Also, if Rel} = rb, we impose that (e;_1,a;(y)) € rb’. Finally, we require that
for every pair of events e, e’ € E"! s.t. (e,e’) € rb'"! and (e’, a;(y)) € so’, (e, a;(y)) € rb’.
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e ar': We impose that for every event e € E'™L, (e, a;(y)) € arl,y € C;. We also require that for
every pair of objects yy,y, € C; s.t. yy, yo, (a;(y1), ai(yz)) € ar’.

We then define hi = (E!, so’, wr?) and & = (k, rb, ar’). Observe that by construction of k' and
& they satisfy Definitions 3.2 and 3.4 respectively; so they are a history and an abstract execution
respectively. In particular, observe that &' is a correction of the abstract execution &' with events
a.

Finally, we define h = (E, so, wr) and & = (h, rb, ar) as, respectively, the history h'en(®) and the
abstract execution £°"(?) We prove that £ is the abstract execution we were looking for.

First, we show that ¢ is valid w.r.t. ny: as & is valid w.r.t. (CC, OpSpec) (Corollary B.13), so by
Lemma 6.4, it is valid w.r.t. (n;, OpSpec). As n; =gpspec N2, € is valid w.r.t. (n2, OpSpec). Next, we
deduce in Proposition B.16 that OpSpec is maximally layered w.r.t. ar. For proving such result, we
rely on Propositions B.14 and B.15. Finally, we conclude in Proposition B.17 that the layer bound
of rspec is bounded by the number of arbitration-free suffixes of v. However, this implies that v
is vacuous w.r.t. n; (Proposition B.18); which is impossible by the choice of v. The contradiction
arises from assuming that n; is arbitration-free but n; is not; so we conclude the result. m]

Proposition B.10. Let OpSpec be a storage that allows multi-object write (resp. read-write) events
whose domain is not Objs. Then, for every pair of finite disjoint sets F, F, there exists a domain D in
OpSpec s.t. F; € D but F, N D = 0.

Proor. The result is immediate as F; is finite. Hence, by the assumptions on operation specifica-
tions (Section 7.4), F; is a domain on OpSpec. O

Proposition B.11. Let v be a visibility formula and i,0 < i < len(v). If conflictsOf(v,i) # 0
and Rel] = wr, OpSpec allows read-write events. If conflictsOf (v, i) = 0 allows events that do not
unconditionally write.

ProoF. Observe that as v is non-vacuous w.r.t. (CMod, OpSpec), CMod \ {v} #opspec CMod.

By Proposition B.6, there exists an execution Z valid w.r.t. CMod \ {v}, an object z and events

for oo fien(o) 8-t 02(fo, - - - fien(v)) holds in &.

On one hand, if conflictsOf(v, i) # @ and Rel! = wr, as E is valid w.r.t. CMod \ {v}, there exists
z s.t. rspec(fi)(z, [Z’, CMod \ {v}]) # 0. Also, conflictsOf (v, i) # 0 iff f; writes on some object z’.
Hence, f; is a read-write event.

On the other hand, if conflictsOf (v, i) = 0, as v is conflict-maximal w.r.t. OpSpec, event f; does
not necessarily write any object. Thus, OpSpec allows events that do not unconditionally write. O

Proposition B.12. The abstract execution & described in Theorem B.9 satisfies that for every i,0 <
i < len(v):
(1) For every objecty € C;, the following conditions hold:
(a) For every object z € Objs, ifz € C; and z < y, G(a;(y), z) = F'(z) U {a;(z)}, while otherwise,
Glai(y), 2) = F'(2),
(b) The execution & | y is valid w.r.t. (CC, OpSpec).
(2) For the event e;, the following conditions hold:
(a) For every object z, if z € Ci, G(e;, z) = F'(z) U {a;(2)}, while otherwise G(e;, z) = F'(z).
(b) The execution &' is valid w.r.t. (CC, OpSpec).
where ctxt_ (e, [£, CC]) = (G(e, 2), r'er(e,z)xG(e,z)» ar rG(e,z)XG(e,z))-

Proor. We prove the result by induction. In particular, we show that for every i, -1 < i < len(v)
and object y, either (0) i = —1 or (1) and (2) hold. The base case, i = —1, is immediate as (0) holds;
so let us suppose that the result holds for every j, —1 < j < i, and let us prove it for i.
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For proving the inductive step, we first prove (1) and then (2). As both (1) and (2) have an
identical proof (observe that the role of object y in the former is just to declare that event a;(y) is
well-defined), we present only the proof of (1).

We show (1) by transfinite induction. Let « be an ordinal of cardinality |Objs|. For every k,0 <
k < a, we denote by Vi to the set containing the first k elements in Objs according to <. We show
that (1) holds for every y € Vi, N C;.

The base, Vj is immediate as Vj = 0. We thus focus on the successor case (i.e., showing that if
(1) holds for every object y € Vi N C; it also holds for Vi), as the limit case is immediate: if k is a
limit ordinal, Vi = |U; ;< Vi; so (1) immediately holds. For showing that (1) holds for every object
y € Vi1 N Gy, as by induction hypothesis it holds for every object y € Vi N Cj, it suffices to show
it for the only object y € Vi4; \ V;. W.Lo.g., we can assume that y € C;; as otherwise the result is
immediate.

We first prove (1a) and then we show (1b). Let z € Objs be an object. Two cases arise depending
on Rely.

On one hand, if i = 0 or i > 0 A Rel} = ar, Fi(z) = {init}. As init € G(a;(y), z), it suffices
to show that the only non-initial event in E in G(a;(y), z) is a;(z) (whenever z € C; and z < y).
Observe that an event e belongs to G(a;(y), z) if wspec(e)(z, [£,CC]) | and (e, a;(y)) € rb*. As
a;(y) € E', by construction of &, e must belong to E’, wspec(e)(z, [£,CC]) | and (e, a;(y)) € (rb})*.

Observe that as either i = 0 or 0 < i < len(v) A Rel] = ar, by definition of rbi, e ¢ Ei~1. Thus, e
must be an event in E’ \ E'"1. Observe that by construction of &, as (e, a;(y)) € (rb’)*, such event

must be an event a;(w), w € C;, w < y. As &' = v e;, by induction hypothesis (1b), we deduce
that & | w is valid w.r.t. (CC, OpSpec). Hence, as wspec(a;(w))(z, [¢%,CC]) |, we deduce thanks to
Property 1 of Definition 7.13 thatz =w -soz € C; and z < y.

On the other hand, if 0 < i < len(v) A Rel] # ar, two sub-cases arise: z € C;, z < y or not. Both
cases are identical, so we present the former, i.e., if z € Cj, z < y, then F'(z) U {a;(2)} = G(a;(y), z).

For proving that F(z) U {a;(z)} € G(a;(y), z), we split the proof in two blocks: showing that
Fi(z) € G(a;(y), z) and showing that a;(z) € G(a;(y), z).

For showing that F'(z) C G(a;(y),z), let e be an event in F'(z). In such case, to e € E'"!,
wspec(e)(z, [£,CC]) | and (e, e;_1) € (rb')*. By the construction of £, it is easy to see that any
such event belongs to E', wspec(e)(z, [£,CC]) | and (e,e;—;) € rb*. As Rel! # ar, we deduce
that (e;_1,a;(y)) € rb? C rb. Hence, (e,a;(y)) € rb*; so e € G(a;(y), z). This show that Fi(z) C
G(ai(y), 2).

For showing that a;(z) € G(a;(y),z), we observe that & = & Ve Asz < y, by induc-
tion hypothesis (1b), & | z is valid w.r.t. (CC, OpSpec). Thus, by Property 1 of Definition 7.13,
wspec(a;(2))(z, [£',CC]) |. Hence, wspec(a;(z))(z, [£CC]) |. As z < y, (ai(2),ai(y)) € so’ C so;
so we conclude that a;(z) € G(a;(y), 2)-

We conclude the proof of the inductive step of (1a) by showing the converse i.e. F'(z) U{a;(z)} 2
G(ai(y),z). Let e € G(a;(y),z). First of all, by the definition of Causal visibility formula (see
Figure 4b), e € G(a;(y), z) iff wspec(e)(z, [£ CC]) | and (e, a;(y)) € rb*. Observe that if (e, a;(y)) €
rb*, by construction of &, such event must belong to E’, wspec(e)(z, [¢%,CC]) | and (e, a;(y)) €
(rb’)*. We prove that if e € E*~! then e € F'(z), while otherwise, if e € E' \ E'"!, then e = a;(z).

Ife € E'"! aswspec(e)(z, [€',CC]) |, wspec(e)(z, [£771,CC]) |. Also, as Rel! # arand (e, a;(y)) €
(rb¥)*, we deduce that (e, e;_1) € (rb’~!)*. In other words, e € F(z).

Otherwise, if e € E? \ E'~1, we note that by construction of &, the only events in Ei\ Ei-lst.

. . . seq(a;) :
(e,ai(y)) € (rb")* are events a;(w),w € C;,w < y. As & = & v e;and z < y, & | zis valid
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w.r.t. (CC,OpSpec). Thus, as wspec(e)(z, [£%,CC]) |, by Property 1 of Definition 7.13 we conclude
that e = a;(2).

For concluding the inductive step, we show that (1b) holds. This is immediate by the definition
of wr': for every event e € & | y, by induction hypothesis (1a) or (2a) — depending on whether
e =e;ora;(w), where 0 < j <i,w e C; - (wr');!(e) = rspec(e)(CC, [¢' I y,z]). Thus, & | yis
valid w.r.t. (CC, OpSpec).

[m}

A consequence of Proposition B.12 is the following result.
Corollary B.13. The abstract execution & described in Theorem B.9 is valid w.r.t. (CC, OpSpec).

Proposition B.14. The predicate vy, (eo, . .. €len(s)) holds in the abstract execution & described in
Theorem B.9.

Proor. The proof is a simple consequence of ¢’s construction. To show that vy, (e, .. . €ien(o))
holds in &, we first show that for every i,1 < i < len(v), (e;-1,€;) € Rel] and to then prove that
wrCons,, (e, . . . €len(s)) holds in &.

We prove that for every i,1 < i < len(v), (e;—1, €;) € Rel]. Four cases arise depending on Rel?.

e Rel! = so: In this case, by construction of events e;_j, e;, we know that r; = r;_;. Hence,
(ei—1,€;) € 50’ C so.

e Rel! = wr: In this case, we first show that there is an object y € D; " W;_; \ C;, and then show
that (e;_1, e;) € wry. For showing the first part, we distinguish between cases depending on
whether 0;_; € D; or not.

— 0;j_1 € D;: In this sub-case, we show that y = 0;_;. On one hand, if conflictsOf(v, i) = 0,
by the choice of event ¢;, 0;_1 € D;_1 \ C;. On the other hand, if conflictsOf(v,i) # 0,
as 0;_1 € D;, we deduce that OpSpec allows multi-object read-write events. Observe
that as v is conflict-maximal w.r.t. OpSpec, conflictsOf(v,i — 1) # 0. Hence, as OpSpec
allows multi-object read-write events, we deduce that 0;-; € D;_; \ C;. In both cases,
as conflictsOf(v,i— 1) # 0 and 0;_; € D;_1, by the choice of W;_;, we conclude that
0i—1 € Wi_1.

— 0;_1 ¢ D;: In this case, we show that y = X;. On one hand, if conflictsOf (v, i) = 0, X; = 0;

so by the choice of %; (see Equation (48)), ¥; = X;_1. By the choice of D;, X;_1 € D; \ C;.
Moreover, as v is conflict-maximal w.r.t. OpSpec, conflictsOf (v,i — 1) # 0; so X;—; € Xj_1.
By the choice of event e;_1, X;_1 € W;_;. Altogether, we conclude that X; € W;_;.
On the other hand, if conflictsOf(v, i) # 0, we note that x; € D; \ C;. As 0;_1 € D;, we
deduce that OpSpec only allows single-object read-write events. Thus, D; = {%;}. As v
is conflict-maximal w.r.t. OpSpec, we deduce that X; C X;_;. As by the choice of e;_1,
Xi_1 € W;_;, we conclude that x; € W;_;.

We prove now that (e;_1,€;) € wry. First, we show that e;_; writes y in £&. On one hand, if

e;_1 is an unconditional write event, wspec(e;_1)(y,c'(y)) |. On the other hand, if ¢;_; is

a conditional write event, as ¢ is valid w.r.t. (CC, OpSpec) (Corollary B.13) and y € W;, by

Property 2 of Definition 7.13, we deduce that wspec(e;—1)(y, ¢’ (y)) |. Then, as Rel! = wr,

ei—1 € F'(y). Observe that by construction of &, e;_; is the ar-maximum event in ¢’(y). We note

that as y ¢ C;, by Proposition B.12, Fi(y) = G(e;, y). To sum up, e;_; is the ar-maximum event
in ctxt, (e;, [£, CC]). As rspec is maximally layered, we deduce that ;1 € rspec(e;)(y, [£, CC]).

Finally, as £ is valid w.r.t. CC (Corollary B.13), we conclude that (e;_1, e;) € wry,.

e Rel} = rb: In this case, we explicitly stated that (e;_1,e;) € rb’ C rb during the construction
of &.
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e Rel} = ar: Similarly, by definition of ar’, we know that (e;_1, ;) € ar’ C ar.

For showing that show that wrConsy (e, ... €jen(s)), We show that for every i,0 < i < len(v)
and every set E € conflictsOf(v, i), the event e; writes on object yg®. If ¢; is an unconditional write,
by the choice of e;, it writes on every object in D;. As yg € D;, we conclude that e; writes on yg.

L . - . ; . seq(a;) .
Otherwise, if e; is a conditional write, we observe that yr € W;. Hence,as &' = ¢, Vv e;and &'

is valid w.r.t. (CC, OpSpec) (Proposition B.12), we deduce using Property 2 of Definition 7.13 that
wspec(e;) (yE, [£),CC]) |. By construction of &, we conclude that wspec(e;) (yg, [£ CC]) |. o

Proposition B.15. Let ¢ be the abstract execution described in Theorem B.9. For everyi,0 < i < len(v),
if the &; suffix of v is non-arbitration-free, then (e;, ejen(v)) ¢ rb*.

Proor. The proof is just an observation about the construction of &: for every j,0 < j < len(v),
(ej—1,e;) € rbiff Rel] # ar. Hence, (e;, €len(y) € rb*) iff for every j,i < j < len(v), Rel; # ar. In
particular, if the ¢; suffix of v is non-arbitration-free, then (e;, ejen(s)) ¢ rb*. ]

Proposition B.16. Let OpSpec be a storage, CMod be a consistency model in normal form w.r.t.
OpSpec and v be a visibility formula in CMod. If there exists an abstract execution & = (h,rb, ar)
valid w.r.t. CMod, an object x and events w, r s.t. vy (w, r) holds in & but (w,r) ¢ (rb)*, then OpSpec
is maximally layered w.r.t. ar.

Proor. First of all, as v, (w, r) holds in &, w € ctxt,(r, [£, CMod]). If OpSpec would be maximally
layered w.r.t. (rb)*, rspec(r)(x, [£, CMod]) contains at least the first layer of ctxt,(r, [£, CMod])
w.r.t. rb. Hence, there would exist an event w’ s.t. w’ € rspec(r)(x, [§, CMod]) and (w, w’) € (rb)*.
As & is valid w.r.t. CMod, we deduce that (w’, r) € wr. By Definition 3.4, we deduce that (w’,r) € rb.
However, this implies that (w, w’) € rb*; which contradicts the assumptions. Hence, OpSpec must
be maximally layered w.r.t. ar. O

Proposition B.17. Let OpSpec be a storage maximally layered w.r.t. ar, CMod be a consistency
model in normal form w.r.t. OpSpec and v be a non-arbitration free visibility formula in CMod. Let
us suppose that there exists an abstract execution & = (h, rb, ar) valid w.r.t. CMod, an object x and
events e, . . . €len(y) Satisfying the following:

(1) for every non-initial event e in &, ife ¢ {e; | 0 < i < len(v)}, then e does not write on x in &,
(2) vx(€o, - - . €len(v)) holds in &, and
(3) for every non-arbitration-free ei-suffix of v, (e, €jen(v)) € rb*.

In such case, the layer bound of OpSpec is bounded by the number of arbitration-free suffixes of v.

Proor. We reason by contradiction, assuming that k is bigger than the number of saturable
suffixes of v. We first show that rspec(ejen(s))(x, [, CMod]) contains less than k events in
{ei | 0 < i < len(v)}, for then deduce that init € rspec(ejen(n))(x, [£, CMod]). After that, we
reach a contradiction by showing that ey € rspec(ejen(o)) (%, [£, CMod]) but (e, €ien(0)) ¢ Wr;
which contradicts that ¢ is valid w.r.t. CMod.

We first show that rspec(ejen(v)) (x, [£, CMod]) contains less than k eventsin {e; | 0 < i < len(v)}.
As v contains less than k saturable suffixes, by the Assumption 3, there is less than k events in
{ei | 0 < i < len(v)} that write on x in & and that succeed ejen(p) W.r.t. rb*. As wr C rb (see

Definition 3.4), we deduce that wry ! (€jen()) contains less than k events in {e; | 0 < i < len(v)}. As
& is valid w.r.t. CMod, wr;l(e[en(v)) = rspec(ejen(v)) (%, [£, CMod]); so we prove the first part.

8For simplifying the proof, we abuse of notation and say that yg = x if E = E. Observe that o is conflict-maximal w.r.t.
OpSpec, either conflicty (Ex) or conflict (Ex) do not belong to o.
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For showing that init € rspec(ejen(s)) (x, [§, CMod]), we observe that by the Assumption 1, no
other non-initial event in £ writes on x in &. Hence, rspec(ejen(o)) (x, [£, CMod]) contain less than
k non-initial events. As init € ctxty(€jen(v), [£, CMod]), and OpSpec is maximally layered with
layer bound k, we conclude that init € rspec(ejen(o)) (%, [£, CMod]).

For proving that ey € rspec(ejen(s)) (x, [£, CMod]) but (eo, ejen(s)) € Wr, we observe that by the
Assumption 2, ey € ctxty(elen(o), [, CMod]). As OpSpec is maximally layered w.r.t. ar, init €
rspec(eien(v)) (%, [£, CMod]), (init,ep) € ar and ey € ctxty(ejen(v), [£, CMod]); we conclude that
ey € rspec(ejen(n)) (x, [£, CMod]).

For reaching a contradiction, we observe that v is non-arbitration-free. Hence, by the Assump-
tion 3, (€9, €len(v)) € rb. Once again, as wr C rb (see Definition 3.4), we deduce that ey & wry ' (€jen(s))-
However, as ey € rspec(ejen(v)) (x, [£, CMod]), we conclude that £ is not valid w.r.t. CMod; which
is contradicts the hypothesis. Thus, the layer bound of OpSpec is bounded by the number of
arbitration-free suffixes of v. O

Proposition B.18. Let OpSpec = (E, rspec, extract, wspec) be an operation specification maximally
layered w.r.t. ar, CMod be a consistency model in normal form w.r.t. OpSpec and v be a simple,
conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility formula. If the layer bound of rspec is
smaller or equal by the number of arbitration-free suffixes of v, then v ¢ CMod.

Proor. Let v be a simple, conflict-maximal w.r.t. OpSpec, non-arbitration-free visibility formula.
We show that v is vacuous w.r.t. CMod; so v ¢ CMod.

We reason by contradiction, assuming that v is non-vacuous w.r.t. CMod. In such case, CMod \
{v} Zopspec CMod but CMod \ {v} < CMod. By Proposition B.6, there exists an abstract execution
on OpSpec, and object x, and events w, r s.t. rspec(r) (x, [, CMod]) \ ctxt,(r, [£,CMod \ {v}]).

We observe that by Property 2 of Definition 7.4, w € ctxt,(r, [£, CMod]). Hence, as w €
ctxt,(r, [£, CMod]) \ ctxt,(r, [£, CMod \ {0}]), we deduce that v, (w,r) holds in &. As v is sim-
ple, there exist events e, . .. €len(y) S.t. €0 = W, €len(v) = ¥ and vy (e, . . . €len(p)) holds in &.

First of all, as rspec is maximally layered w.r.t. ar and ey € rspec(ejen()) (€0, [£, CMod]), every
eventin {ey, . .. ejen(v) } that writes x is also in rspec(ejen(y)) (€0, [£, CMod]). As v is conflict-maximal
w.r.t. OpSpec, at least |E,| events write on x; where Ex € P (&, ... €len(s)) s-t. conflict,(Ex) € v.
Observe that for every event e; s.t. ¢ € E, and suffy(vy,i) is arbitration-free, as CMod is
closed under causal suffixes, there exists a visibility formula v € CMod s.t. v} (e;, €en(o))-
Thus, |E,| > af(v), where af(v) is the number of arbitration-free suffixes of v. Moreover, as
ey € rspec(elen(v)) (€0, [£, CMod]), and v is not arbitration-free, |[Ex| > af(v). However, as the layer
bound of rspec, k, is smaller or equal than the number of arbitration-free suffixes of v, the number
of events read by fien(s) is at most af(v). Hence, |E| < af(v), which contradicts that |E,| > af(v).
We reach a contradiction; so the initial hypothesis, that v is non-vacuous w.r.t. CMod, is false. Thus,
v ¢ CMod. O
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C Proof of the Basic Arbitration-Free Consistency Theorem

Let in the folloeing Spec = (CMod, OpSpec) be a basic storage specification. We show that there
exists an available Spec-implementation iff CMod is arbitration-free w.r.t. OpSpec.

C.1 Arbitration-Freeness Implies Availability
As discussed in Section 6, the proof of such result is decomposed in three steps:

(1) We show that arbitration-free consistency models w.r.t. OpSpec are weaker than CC
(Lemma 6.4).

(2) We deduce that available (CC, OpSpec)-implementations are also available (CMod, OpSpec)-
implementations as an immediate consequence of Lemma 6.5.

(3) We prove that there exists available (CC, OpSpec)-implementations (Lemma 6.6).

Lemma 6.4. Let Spec = (CMod, OpSpec) be a basic storage specification. If CMod is arbitration-free
w.r.t. OpSpec, then CMod is weaker than CC.

Proor. For showing that CMod is weaker than CC, let h = (E, so, wr) be a history and ¢ =
(h, rb, ar) be an abstract execution of h valid w.r.t. Spec. Let n be a consistency model in normal
form that is OpSpec-equivalent to CMod. By Theorem B.1, such model always exists. As CMod
is arbitration-free, every visibility formula v € n is arbitration-free. We conclude the result by
showing that n < CC, i.e. showing that for every object x and every pair of distinct events e, e’ € E,
if v, (e, e’) holds in & then 05 (e, ¢’) holds in & as well; where 0 is Causal, the visibility formula of
CC (Figure 4b).

First, as v, (e, €’) holds in &, e writes x in € and wr;l(e) # (. Moreover, as v is simple, for every
i,1 <i<len(v), Rel] € {so, wr, rb}. By Property 2 of Definition 3.4, we deduce that (e, e’) € rb*.
Altogether, we conclude that U)C(C(e, e’) holds in &. ]

Lemma 6.6. Let OpSpec be a basic operation specification. There exists an available (CC, OpSpec)-
implementation.

PrOOF. We define an available implementation of Spec®® = (CC, OpSpec).

As discussed in Section 5, any implementation I = (S;, A, s(i), A;) can be characterized by describ-
ing its set of states S;, its actions A;, its initial state cr(i) and its transition function A;.

First, we define S; as the set of possible values that each object may have; and the declare the
initial state any possible state in S;. Next, we define A; via the synchronized actions Events X (Objs X
Events U {0}), as well as the local actions send and receive. We assume local actions are defined
in a similar way to Events, as tuples a = (id, r, op, m), where id is an action identifier, r is a replica
identifier, op an operation identifier and m is additional metadata of the action. As for events, we
use id(a), rep(a), op(a) and md(a) for indicating the identifier, replica, operation and metadata of
an action a.

For describing its transition function, we rely on the definition of CC. As we design (S;, A, sg), Ay)
to be an available Spec“-implementation, we require that any induced abstract execution must
be valid w.r.t. Spec‘. However, Definition 4.2 describes validity “a posteriori”, i.e. validity can
only be checked once the event is executed; while transition functions describe validity “a priori”,
i.e. describe a procedure to compute a write-read of a given, not yet added event. For solving
this issue, we observe that under CC, that the context of an event e belonging to a synchronized
action a = (e, m) only depends on (a) the transitive set of received actions before the last action
in its replica and (b) the synchronized actions executed in its own replica. Ensuring transitive
communication, i.e. ensuring that every send action on replica r transmits information about all
synchronized actions executed or received on replica r before such send action suffices to provide
CC.
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More in detail, for describing the transition function A;(¢, a), we require that (1) a is not present
in t and (2) transitive communication is ensured. Also, we require a third condition depending on
the type of a:

e if a is a synchronized action, we require that (3a) if a represents a read operation, a = (e, m),
then e must read from the latest writing event w.r.t. ar (which coincides with the trace order)
received before I,

e if a is a send action, then (3b) it precedes a synchronized action, and

e if ais a receive action, then (3c) there exists a unique preceding send action that matches it.

where r = rep(a) and I! to the last action in trace t whose replica is r.

On one hand, (1) ensures that A;(t,e) is well-defined, i.e. in every trace of A;, each action
contains each action exactly once. On the other hand, (2) and (3a) ensure that If is a Spec*“-storage
implementation while (3b) and (3c) ensure that Ir is an available storage implementation.

Formally, Ai(t,a) | if and only if a ¢ t and sat(t, a) holds; and in such case A;(t,a) = t ® a. The
predicate sat(t, a) is described in Equation (50).

a= (e, M;(e)) if op(a) # send, receive
sendlfData(t,a)  if op(a) = send
sendAllData(t, a)

and maxSend(t, a)

minRcv(t, a) if op(a) = receive

and maxRcv(t, a)

sat(t,a)= (50)

where M;(e) is the mapping assigning to the objext x = obj(e) the last event that writes on
x received by e, formally defined using Equations (51) and (52); and the predicates sendlfData,
sendAllData, maxSend, minRcv and maxRcv are defined in Equations (53) to (56).

My(e) = [x . { {max,: Ef(e)} ifx = obj(e) ]
0 otherwise x€Objs
EX(e) = {e’ e’ € Events Nt A e’ writes x in exec(t) A } (51)
(rep(e’) = rep(e) Vrec:(€’,e))
arg = angr(e)xEr(e)

op(r) = receive, rep(r) = rep(e),
rec;(e’,e) = 3r,s € t s.t. /\ op(s) = send, rep(s) = rep(e’), (52)
rb-Set(s) = rb-Set(r),e’ <; s <;r<e’

sendlfData(t, a) == op(a’’) # send (53)
where a” =max., {a’ € t | rep(a’) = rep(a) A op(a’) # receive }

sendAllData(t, a) == Va’ € t.rep(a’) = rep(a) A op(a’) # send

(54)
= RV}, C rb-Set(a)
{e} if op(a’) # send, receive A
X — a’ = (6, _)
where RVg, = rb-Set(a’) if op(a’) = receive
0 otherwise
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maxSend(t,a) :== Pa’ € t.op(a’) = send A rb-Set(a) = rb-Set(a’) (55)
minRcv(t,a) :== 3d’ € t.op(a’) = send A rb-Set(a) = rb-Set(a’) (56)
maxRcv(t,a) := Aa’ € t.op(a’) = receive A rep(a) = rep(a’) A rb-Set(a) = rb-Set(a’) (57)

Note that as I contains send and receive actions, as well as events along with their write-read
dependencies, I is a storage implementation. For proving that I is the searched implementation,
we introduce the following notation: for a trace ¢ and an event e € t, prefix(t, e) to the trace s.t.
A(prefix(t, e), e) is a prefix of t.

The rest of the proof, showing that I is an available Spec‘“-implementation, is a consequence
of Lemmas C.1 to C.3. O

Lemma C.1. The implementation I is an Spec“-implementation.

Proor. Let Pg = (Sp, Ap, sg ,Ap) be a program. We prove by induction on the length of all traces
in 7p,|;, that any trace t is feasible and its induced abstract execution is valid w.r.t. Spect®. The
base case, when ¢t = {(initp,, init;,)} is immediate as ¢ contains exactly one event that does not
read any object. Hence, let us assume that for any trace t" € 7p,z, of at most length k, exec(t’) is
valid w.r.t. Spec®; and let us show that for any trace t of length k + 1, exec(t) is also valid w.r.t.
Spect®. Let h = (E, so, wr) and & = (h, rb, ar) be respectively the induced history history(t) and the
induced abstract execution exec(t) where ar coincides with the trace order. We denote sr to the
induced order between send-receive actions with the same rb-Set on t. Before proving that & is

valid w.r.t. Speccc, we show that t is feasible, i.e. £ satisfies Definition 3.4.

e rb = rb;so*: This is immediate by the definition of induced receive-before.

e wr Uso C rb: By definition of rb, so C rb, so we focus on proving that wr C rb. Let w, r be
events and x be an object s.t. (w,r) € wry. In such case, there is a pair of actions a,, a,, s.t.
r € a,, w € a,, and w € wr-Set(a,)(x). Hence, {w} = max, Ef (). We deduce then that
rec; (w, r) must hold; which implies that there exists a send action s and a receive action v
s.t. rb-Set(s) = rb-Set(v) and w <; s <; v <; r. By sendAllData predicate, w € rb-Set(s).
As rb-Set(s) = rb-Set(v), w € rb-Set(v). By the definition of induced abstract execution,
(w,r) € rb.

e rb C ar: For proving that rb C ar, as rb can be derived by sr and so, it suffices to prove that

both so,sr C ar. First, as so is the partial order induced by the total order <, on actions
executed on the same replica, so C ar.
Next, for proving that sr C ar, let s be a send action and let v be a receive action s.t.
(s,v) € sr. Let us consider p! = prefix(t,v) be the prefix of ¢ before v. On one hand, as p!, is a
prefix of t’, Aj(pl,v) |. In particular, minRcv(p’, v) holds; so there is a send action s’ in p
s.t. rb-Set(s”) = rb-Set(v). We show that s’ = s. Otherwise, then w.l.o.g. s <, s’. Note that
Ai(prefix(t,s’),s’) | as prefix(t,s”) ®s’ is a prefix of t’. In such case, maxSend(prefix(t,s’),s")
does not hold; which is impossible as A;(prefix(t,s’),s”) |. Therefore,s = s’. Ass’ € p, s
precedes v in t; so (s,v) € ar.

After proving that ¢ is feasible, we show that & is valid w.r.t. Spec®®. By Definition 4.2, we need
to show that for every event r and object x, if rspec(r) T, wry!(r) = 0, and otherwise, wry!(r) =
{max,, ctxty(r, [£,CC])}. Let r be a read event, x be the object it affects and p = prefix(t,r). We
know by Equation (51) that wr!(r) = {maxm;: E3(r)}. Observe then that by Equation (51) and rb’s
definition, E} (r) = ctxtx(r, [£,CC]). Thus, we conclude that wryl(r) = {max,, ctxt,(r, [£,CC])}. O

Lemma C.2. For every program Pr and every trace t of I || Pg, there is no replica waiting in t.
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Proor. Let Pr = (Sp, Ap, sg, A,) be a program, r € Reps be areplicaand t € Tpeilie be a reachable
trace. Let also be t; € 7p, and t; € Ty, traces s.t. t = (1, t2). To prove that r is not waiting in ¢, let
us suppose that there exists an event e € Eventsp, s.t. op(e) # end, rep(e) = r and Ap,(t1,€) |,
and let us prove that there exists a non-receive action a s.t. Ay, p, (t, a) |.

Let a be the action (e, M;(e)); where M, (e) is described using Equation (51). We observe that
as Ap,(t1,€) |, APE”IE(t, ex) |. Moreover, op(a) # receive. Hence, r is not waiting in t; so Ig is
available. O

Lemma C.3. For every finite program Pg, the composition I || Pg is also finite.

Proor. Let Pg = (Sp, Ap, sg, A,) be a finite program. The implementation I is conditionally
finite on P if for every trace t € 7p,;, there exists a constant k; € N s.t. len(t) < k;. Let thus
t € Tpgiig» 11 € Tpy, to € 1, be traces s.t. t = (11, 12). As Pg is finite, the length of ¢, len(t,), is finite.
We show that k; == 3 - len(t;) is the constant we search.

Three cases arise, depending on the type of action we consider. First, by maxRcv predicate, the
number of receive actions coincides with the number of receive actions with distinct metadata;
which by minRcv, is bounded by the number of send actions in the trace. Then, by sendIfData, the
number of send actions is bounded by the number of synchronized actions. Finally, by the parallel
composition definition, the number of synchronized actions in t and t; coincide; so such number is

bounded by len(#;). Altogether, we deduce that len(t) < 3 - len(t;) = k;. O

C.2 Availability Implies Arbitration-Freeness

As explained in Section 6, we prove the contrapositive: if CMod is not arbitration-free, then no
available Spec-implementation exists. Indeed, if CMod is not arbitration-free, every normal form
CMod’ of CMod contains a simple visibility formula involving ar (see Definition 6.2). By Lemma 6.7,
such a formula precludes the existence of an available (CMod’, OpSpec)-implementation. Conse-
quently, there is no available (CMod, OpSpec)-implementation, since any such implementation
would also be an available (CMod’, OpSpec)-implementation - this is an easy observation as CMod
is equivalent to CMod’ (see Theorem B.1).

Proor. We assume by contradiction that there is an available implementation I of Spec but
CMod contains a visibility formula v s.t. for some i,0 < i < len(v), Rel] = ar. We use the latter
fact to construct a specific program, which by the assumption, admits a trace (in the composition
with this implementation) that contains no receive action. We show that any abstract execution
induced by this trace, which is admissible by any available implementation of Spec, is not valid
w.r.t. Spec. This contradicts the hypothesis.

The program P we construct generalizes the litmus program presented in Figure 1. P uses two
replicas ro, 1, two distinguished objects xo, x; and a collection of events ef’, 0<ic<len(v),l€{0,1}.
The events are used to “encode” two instances vy, and vy, of the visibility formula.

Let d, be the largest index i s.t. Rel] = ar (last occurrence of ar). Then, v is formed of two parts:
the path of dependencies from ¢, to ¢4, which is not arbitration-free, and the suffix from ¢4, up to
€len(v) the arbitration-free part. Thus, v is of the form:

len(v)
Vi (€0, €len(0)) == Te1, ..., En-1. /\ (ei-1, &) € Rel] A gy writes x A wr;l(ﬂen(y)) 0
i=1

where Rel? € {so, wr,rb,ar}, for all i < d, Relsv = ar, and Rel? € {so, wr,rb} for all i > d,.
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In the construction, we require that replica r; executes events ¢, if i < d, and events e;'"!

otherwise — the replica r; executes the non arbitration-free part of v for object x; and the arbitration-
free suffix of v for x;_;. All objects in replica r; access (read and/or write) x; except el’é’n (0)° which
access with x1_;. We denote by %}’ to the unique object that event ¢;' reads and/or writes.

More in detail, we construct a set of events, E, histories, i = (E’, so}, wr’), and executions,
& = (R, rbl,ar’), 0 < i < len(v) inductively, starting from an initial event init, and incorporating
at each time a pair of new events, e;” and e;". For simplifying notation, we use the convention
init=¢" =€,

For the inductive step, we assume that the abstract execution £~ = (h'~1, rb'"1, ar™!) associ-
ated to the history h'~! = (E'"!,s0’™!, wr'™!) contains events €™, ... €}, ;' and is well-defined
(satisfies Definition 3.4) and we construct the history A’ and the abstract execution &'.

We distinguish between cases depending on the value i:

e | = 0: In this case, we consider ey be an event s.t. wspec(egl)(wval(init) (32;”)) 1.
e 0 <i<len(v), Rel{ = wr and Rel},; = wr: In this case, it is easy to see that by Propo-

sition B.11, OpSpec allows atomic read-write events. We consider e}’ be an event s.t.
rspec(e;’) | and wspec(w;")(valuey,i-1 (w;', ;")) |.
0 < i < len(v) and Rel} # wr and Rel},; = wr: In this case, if OpSpec allows unconditional

writes, then we select ef’ as an unconditional write event on object 5(;” . Otherwise, we select

event e}’ s.t. rspec(e;’) | and wspec(e;") (wval(w;")(x]")) .

0 < i < len(v) and Rel},; # wr: In this case, we select ¢;' to not write X;' unless it is

necessary. If OpSpec allows read events that are not write events, or if allows condi-

tional atomic read-write events, we select ef’ as an event such that rspec(ef’ ) | but

wspec(eg:’)(wval(wl’.;’)(fc;’)) 7. Otherwise, we select event e; such that rspec(e;’) | and
1 1 o1

wspec(e; ') (wval(w;")(x;")) .

e i =len(v): In this case, we consider e
x|

rspec(e]en(v)) 1.

where [ € {0,1} and w}' = max,,i-1{e € E'""! | wspec(e) (obj(e")) | A (e, €
as init writes on every object, wf’ is well-defined.

First of all, observe that event ef’ is well-defined thanks to Lemma C.4 and the assumptions on
OpSpec (Section 4.3). We denote E' = E'"1 U {e;*, &' }. We observe that w.l.o.g., we can assume
that the id(e]") is bigger than every identifier of an event in E'~! and that id(e]*) < id(e}").

We conclude the description of A' and & by specifying the relations so’, wr’, rb’, ar’. We require
that so’ (resp. wr’, rb’, ar’) contains so’™! (resp. wri™1, rbi™!, ari™1). Also, we require additional
constrains on them due to event e;:

X,

I’ to be an event that reads object x}’, i.e.
en (o) i

X,
i

") € so'}. We note that

e so’: We require that (e, €;") € so’ iff rep(e) = rep(e;"); as well as (init,e;!) € so’.

e wr': If €] is not a read event, we require that wrjci_1 (e') # 0. Otherwise, we require that
({wi'},el") € wri.

e rb’: We require that rb’ = so’.

e ar': We impose that for every event e € E', (e,€]") € ar'. Also, we impose that (e]°, ;") € ar’.

Then, we define Events, = E'*n(9) a5 the set our program employs. The set Events, induces the
set of traces 7.

We define the program P = (Sp, Ap, sg, Ap), where init, = init and A, is the transition function
defined as follows: for every trace t € 7, and event e € Events,, A (t,e) | if and only if e ¢ t and
every event in Events, whose replica coincide with e and has smaller identifier than e is included
in t.
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Given such a program P, the proof proceeds as follows:

(1) There exists a finite trace t of P || I that contains no receive action (Lemma C.5): Since I is
available, it can always delay receiving messages, and execute other actions instead. Then, as
P is a finite program, such an execution must be finite.

(2) The trace t induces a history h, = (E, so, wr) and an abstract execution &, = (h, rb, ar) where
rb = so (ar is arbitrary as long as rb C ar). As Ig is valid w.r.t. Spec, &, is valid w.r.t. Spec.
Next, we prove that since rb = so, events in &, read the latest value w.r.t. so written on their
associated object in &, (Lemma C.6). In particular, we deduce that all traces of P without
receive events induce the same history and therefore, the induced history does not change
when the induced arbitration order changes

(3) Since ar is a total order, either (e p€_) €aror (e _p €. _;) € ar. Wlo.g., assume that
(e;" 1€, ;) € ar. By Lemma C.7, we deduce that e ’e ctxtxo(eI n(0)’ [&, CMod]). The proof
is explamed in Figure 5: if (e o v_1) € ar, then all events e;° form a path in such way that
on(eo ,.. | n( )) holds in §V

(4) Since e on() is the only event at r; that reads or writes xy and events in &, read the

latests values w.rt. so in &, we deduce that e reads x, from init. However, as

( )
[&,CMod]) and init precedes e,’ in arbitration order, we deduce

P n(v)) 1 but wr; (elen(v)) *
{maxq, ctxtxO(e[en(U), [, CMod])}. Therefore, &, is not valid w.r.t. Spec (see Deﬁmtlon 4.2).
This contradicts the hypothesis that Ir is an implementation of Spec. O

X0
0 len(v)’
that e does not read the latest value w.r.t. ar, i.e. rspec(e]"

e’ € ctxtx0 (e®

Lemma C.4. Let Spec = (CMod, OpSpec) be a storage specification s.t. CMod is in normal form
w.r.t. OpSpec. For every visibility formula v € CMod, there exists an abstract execution valid w.r.t.
Spec, &, an object x and events ey, . . . €len(v) S-L. rspec(elen(v)) | and vx(eo, . . . €jen(v)) holds in &.

ProOOF. Let v € CMod be a visibility formula. As CMod is normal form w.r.t. OpSpec, v is non-
vacuous; so CMod # CMod \ {v}. Hence, there exists an abstract execution valid w.r.t. Spec, &, an
object x and a read event r s.t. ctxt,(r, [, CMod]) # ctxt,(r, [, CMod \ {v}]). As CMod \ {0} <
CMod, we conclude that there exists events ey, ... €len(v) S-t. ' = €len(y) and vx (e, .. . €len(v)) holds
in . O

Lemma C.5. For every available storage implementation, I, there exists finite reachable trace
l e 71—3||IE s.t.
(1) t does not contain any action a s.t. op(a) = receive.
2) for every event e € Events, there exists exactly one action a € t s.t. ev(a) = e and,
3) for every two actions a,a’ € t in the same replica, if ev(a) |, ev(a’) | and id(ev(a)) <
id(ev(a’)), thena <; a’

Proor. Let Ir be an available storage implementation. We construct a sequence of traces {t'}ien
s.t. for each i € N (1) ¢ does not contain any receive action, (2a) for every event e € Events,, s.t.
id(e) < id(lastrep(e) (1 (1)) there is exactly one action a € ' s.t. ev(a) = e, (2b) for every event
e € Events,, s.t. id(e) > id(lastrep(e)(ﬂl(ti))) there is no action a € t' s.t. ev(a) = e, and (3) for
every two actions a,a’” € t,if ev(a) |, ev(a’) | and id(ev(a)) < id(ev(a’)), thena <,: a’.

Let t° = initp;, be the first trace of our sequence. Clearly, t° satisfy properties (1), (2a), (2b)
and (3). Then, let n € N and, assuming that the trace " satisfy properties (1), (2a), (2b) and (3), we
define ¢"*!. If for every replica r and every event e € Eventsy, Ap (1 (t"), €) T, we define t"*! = ¢".
If not, let r, be a replica and e, € Events, be an event s.t. A, (71(t"), e,) |. As I is available, there
exists an action a, s.t. op(a,) # receive and Ap 1, (t",a,) |. We then define = Apyr (", an).
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By induction hypothesis on t?, t" satisfies properties (1), (2a), (2b) and (3). We show that ¢"*!
also satisfies (1), (2a), (2b) and (3). Without loss of generality, we assume that t"*! # ¢" as otherwise
the result immediately holds. First, as t" satisfies (1) and a, is not a receive action, t"*1 satisfies
property (1). Properties (2a) and (2b) immediately hold from the definition of Apy, .

Finally, for proving that t"*! satisfies (3), let a,a’ € t" be distinct actions s.t. ev(a) |, ev(a’) |
and id(ev(a)) < id(ev(a’)).If a,a’ # a,, as t" satisfies (3), a <;» a’ and therefore, a <1 a’.
Otherwise, note that as t" satisfies (2b), for every event e € 7;(t"), id(e) < id(ev(ay)). Moreover,
as no two events in Events, have identical identifier, traces do not contain the same event twice
and a # a’, we deduce that a’ = a,,. As a, = last,, (t"*!), we conclude that a < a’.

By construction, t* is a trace in 7p;,.. As P is finite and I is available, every trace t € Tp|, is
finite. We show by contradiction that there exists some k € N s.t. t* = t¥*1, Consider the sucession
of traces {t"},cn and let us assume that tk £ t5+1 for any k € N. In such case, we define t* as the
limit of such sucession, i.e., the trace obtained by executing events actions a;,0 < i < N (which are
well-defined by construction). Such infinite trace belongs to 7p)|;,. However, as P is finite and If is
available, every trace t € Tp 1s finite. Thus, t* must be finite; which contradicts its construction.
Hence, such k exists.

We show that the trace t* is the searched trace. Clearly, as t* satisfies (1) and (3), it suffices to
prove that it also satisfies (2). On one hand, as t* = t**1, for every event e € P, Ap(nl(tk), e) 7.

Hence, for every replica r;, 1 € {0,1}, last,(m (tF)) = eliln‘(’v).

event e € Events, with replica r; has smaller identifier than e]’::‘r;(lv). Therefore, as t* satisfies (2a),

there is exactly one action @’ € t s.t. ev(e’) = e; so t* satisfies (2).

By construction of Events,, every

O
Lemma C.6. For every pair of indicesi,—1 < i < len(v), [ € {0,1},
o Ife;’ is a read event, then ({w;'},e}") € W
o Ife;’ is a write event s.t. wval(e;")(X]") |, then wspec(e;") (wval(w;")(x;")) |.
Proor. We prove the result by induction on i; where the base case, i = —1, trivially holds. For

showing the inductive case, let us assume that the result holds for every event e;f’/, -1<i"<il' e
{0, 1}, and let us show it for events ef", e;“. We divide the proof in two blocks, whether ef’ is a read
event, and ef’ is a write event.

For the first part, we note that by construction of &, using Lemma C.5 we know that &, does
not contain any receive event, rb = so. Hence, as &, is valid w.r.t. Spec, wr C rb = so. Thus,
e;' reads X;' from an event that precedes it in session order. In particular, by Definition 4.2,
wr;}l (€;") = {max,, ctxt g (e, [, CMod])}; so wr;,}l (e") = {w"}.

For the second part, we can assume w.l.o.g. that e;” is a conditional write, as otherwise the result
immediately holds. By the choice of ¢;", in this case, we conclude that wspec(e;") (wval(w;")(x}")) |

]

Lemma C.7. Foreveryl € {0,1}, if (¢}! ,e}'”)) € ar, thenef' € ctxty (¢! . [£,CMod]).

=1’ len(v)’
Proor. For proving that e;' € ctxty, (el);’n(v), [£5, CMod]), we show that vy, (e), el);’n(v)) holds in &,.

Observe that by the choice of events and Lemma C.6 ;' writes x; in &, and wr;l1 (e]’;’n (U)) # 0 holds

in &,. Therefore, to conclude the result, we prove that for every i, 1 < i < len(v), (efi o ef’) € Rel?.
For proving it, we observe that CMod is in simple form. Thus, for every i,1 < i < len(v), Rel!

is either so, wr, rb or ar; which simplify our analysis. First, if i = d,,, by definition of d, Rel} = ar.
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By hypothesis, (62271’ ez;’l) € ar. In such case, as id(ez;’l) < id(e;i) and rep(ez;’l) = r‘ep(e;i),
(e;;’_’l, e(’z ) € so. Therefore, as so C ar and ar is a transitive relation, we deduce that (el’;i i e;i ) € ar.

Next, if i # d,, we notice that (el’.cfl, ef”) € so C rb C ar. Hence, if Rel] is either so, rb or ar, the
result immediately holds. Otherwise, if Rel] = wr, we show that ef" is a read event and effl = wfo;
which let us conclude that (e]°, ;") € wr thanks to Lemma C.6.

First, we show that if i # len(v) and Rel] = wr, then wf’ = efﬁl. Thanks to the choice of
P, if Rel} = wr, then ¢;' is a write event s.t. wval(e;’)(x;') |. By Lemma C.6, we deduce that
e’ writes ;" in&,. Asi # len(v), X', = %;'. Also, as Rel} = wr, rep(e;’) = rep(e;’,). Altogether,
we deduce that e} | is an event writing X' that is the immediate predecessor of e}’ w.r.t. so. Hence,

X7 X7
wil=el,.
Finally, we show that Rel], n(w) * WI and conclude the result. We prove the contrapositive, that
if Rel} = wr, v is vacuous w.r.t. Spec. If Rel’ = wr, for every abstract execution & valid
en(o) len(0)

w.r.t. Spec, object x and a collection of events fo, ... fien(o), if 0x(fo, . -, flen(o)) holds in &', then
(fien(v)-1> fien(0)) € wr. Thus, &’ is valid w.r.t. (CMod \ {v}, OpSpec). Hence, v is vacuous w.r.t.
OpSpec. O
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D Proof of the Arbitration-Free Consistency Theorem

Lemmas 8.2 and D.1 prove the AFC theorem.

D.1 Arbitration-Freeness Implies Availability

The proof of (1) = (2), essentially coincides with that of Lemma 6.6: we present an available Spec-
implementation that guarantees CC. As in Lemma 6.6, CMod is arbitration-free, so by Lemma 6.4,
this implies that CMod is weaker than CC. Thanks to Lemma 7.11, any implementation of CC also
ensures CMod.

Lemma D.1 ((1) = (2)). Let OpSpec be a basic operation specification. There exists an available
(CC, OpSpec)-implementation.

Proor. The main difference in the construction w.r.t. the implementation shown in Lemma 6.6
corresponds to the transition function, A;. More specifically, the main and only change arise in
Equation (51), which is substituted by Equation (58).

M;(e) = [x > rspec(e)(x, Ey (€))]xeobjs
e’ € Events Nt A e’ writes x in exec(t) A
X —_ ’
Ei(e) = :e (rep(e’) = rep(e) V rec,(¢', ¢)) } (58)
ar; = anNEr(e)xE¥(e)

Is immediate to show that I is a storage implementation. Showing that I is an available
Spec-implementation is done as in Lemma 6.6. Observe that Lemmas C.2 and C.3 apply to this
implementation; so (S;, Aj, s(i), A;) is an available implementation. In Lemma D.2 we show that indeed
I is an implementation of (CC, Spec), concluding the result.

(]

Lemma D.2. The implementation Ig is an implementation of Spec’ = (CC, OpSpec).

ProoF. Let Pp = (Sp, Ap, sg ,Ap) be a program. We prove by induction on the length of all traces
in 7p, 1, that any trace ¢ is valid w.r.t. Spec’. The base case, when ¢ contains a single action, is
immediate as such action corresponds to the initial event, which does not read any object. Let us
assume that for any trace t’ € 7p,;, of at most length k, exec(t’) is valid w.r.t. Spec’; and let us
show that for any trace t of length k + 1, exec(t) is also valid w.r.t. Spec’.

Let h = (E,so,wr) and & = (h,rb, ar) be respectively the history history(t) and the abstract
execution exec(t). We denote sr to the induced order between send-receive actions with the same
metadata on t. For proving that & is valid w.r.t. Spec’, we first prove that ¢ is indeed an abstract
execution, i.e., ¢ satisfies Definition 3.4. In particular, by the construction of (S;, A;, s(i), A;) (compared
with that of Lemma C.1), it suffices showing that wr U so C rb.

By definition of rb, so C rb, so we focus on proving that wr C rb. Let w, r be events and x be
an object s.t. (w,r) € wry. In such case, there is a pair of actions a,, a,, s.t. r € a,, w € a,, and
w € wr-Set(a,)(x). Hence, w € rspec(r)(x, E}(r)). We deduce then that rec;(w, r) must hold;
which implies that there exists a send action s and a receive action v s.t. rb-Set(s) = rb-Set(v)
and w <; s <; v <; r. By sendAllData predicate, w € rb-Set(s); so by minRcv, w € rb-Set(v). By
the induced abstract execution definition, (w,r) € rb.

Finally, we show that & is valid w.r.t. Spec’. By Definition 7.8, it suffices to show that for every
event r and object x, wr;1 (r) = rspec(r) (x, ctxty(r, [£,CC])). Let r be a read event, x be an object
and p = prefix(t, r). We know by Equation (58) that wr;'(r) = rspec(r)(x, E;f(r)). Observe that by
Equation (58) and rb’s definition, EZ(r) coincides with ctxty (r, [£,CC]). Thus, so we conclude that
wri(r) = rspec(r) (x, ctxty(r, [t,CC])). )
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D.2 Availability Implies Arbitration-Freeness

The proof of this result mimics that of Lemma 6.7. We prove the contrapositive: if CMod is not
arbitration-free, then no available Spec-implementation exists. Indeed, if CMod is not arbitration-
free, every normal form CMod’ of CMod contains a simple visibility formula involving ar, and such
formula precludes the existence of an available (CMod, OpSpec)-implementation (see Lemma 8.2).

Lemma 8.2. Let Spec = (CMod, OpSpec) be a storage specification. Assume that CMod contains a
simple visibility formula v which is non-vacuous w.r.t. OpSpec, such that for some i,0 < i < len(v),
Rel] = ar. Then, there is no available (CMod, OpSpec)-implementation.

Proor. We assume by contradiction that there is an available implementation Iz of Spec but
CMod contains a visibility formula v non-vacuous w.r.t. OpSpec s.t. for some i,0 < i < len(v),
Rel] = ar. We use the latter fact to construct a specific program, which by the assumption, admits a
trace (in the composition with this implementation) that contains no receive action. We show that
any abstract execution induced by this trace, which is admissible by any available implementation
of Spec, is not valid w.r.t. Spec. This contradicts the hypothesis.

The program P we construct generalizes the litmus program presented in Figure 1. P uses two
replicas ry, r1, two distinguished objects x, x; and a collection of events e;", 0<ic<len(v),l€{0,1}.
The events are used to “encode” two instances of vy, and vy, .

Let d, be the largest index i s.t. Rel} = ar (last occurrence of ar). Then, v is formed of two parts:
the path of dependencies from ¢, to ¢4, which is not arbitration-free, and the suffix from ¢4, up to
€len(v) the arbitration-free part.

For ensuring that v, (e;’, . . . e,') holds in an induced abstract execution of a trace without receive
actions, we require that if Rel] = wr, then eﬁ | is a write event and ef’ is a read event. For ensuring
that wrCons} (e, . . . €len(v)) holds in such abstract execution, we consider a distinct object yg, also
distinct from x, x;. These objects represents each different conflict in v in an explicit manner.
Intuitively, we require that events e;’ write on object yg (resp. x;) iff &; € E.

More formally, we denote by Ex € P (e, ... €len(s)) to the set s.t. conflicty(Ex) € v. Also, for
every i,0 < i < len(v),] € {0,1}, we denote by X;" to the set containing objects yg (resp. £;") iff
E € conflictsOf (v, i) (resp. Ex € conflictsOf(v, i)); where 323(’ = x;7 if i < d, and x;_; otherwise. We
denote by X to the union of sets X;*,0 < i < len(v), ! € {0, 1}.

In the construction, we require that replica r; executes events e;’ if i < d, and events e, '~
otherwise — the replica r; executes the non arbitration-free part of v for object x; and the arbitration-
free suffix of v for x;_;. We denote by r;" to such replica.

More in detail, we construct a set of events, E’, histories, h' = (E’, so’, wr’), and executions,
& = (h,rbl art), 0 < i < len(v) inductively, starting from an initial event init, and incorporating
at each time a pair of new events, efo and e;“. We use the notation h~! and £7! to describe the
history and abstract execution containing only init respectively. For simplifying notation, we use
the convention init = ef”l = e’fll.

For the inductive step, we assume that the abstract execution £~ = (h'~!, rb'"!, ar~!) associ-
ated to the history hi=1 = (E71, 50’1, wri™!) contains events ef"l ... effl, efjl and is well-defined
(satisfies Definition 3.4) and we construct the history h’ and the abstract execution &.

The construction of ¢ follows the structure of that constructed in Lemma 6.7’s proof, but with
the technical details of that used in Theorem B.9’s proof.

For the inductive step, we assume that the abstract execution &~! = (=1, rbi=!, ar™!) associated
to the history h'~! = (E*~!,so’™!, wr'™!) contains events €™ ... ;" ;" | and is well-defined (satisfies
Definition 3.4) and we construct the history i’ and the abstract execution .

In the following, let I € {0, 1}.

1
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Like in Theorem B.9, we define a pair of special objects, X}’ and 0;". The purpose of object x;" is
control the number of events in ¢ that write object x;. Equation (59) describes %;; where choice is
a function that deterministically chooses an element from a non-empty set. The object o;" is an
object different from objects x, yg, E € P (&, . . . flen(v)) and o;.q', -1 < j<il'’ €{0,1} that we use
for ensuring that if Rel] = wr, then (e;_1, ¢;) € wr. Wlo.g., we can assume that of‘) * ofl.

X! ifX" =0
=g & if X;" # 0 and £ € X! (59)
choice (X;) if X" # 0 and " ¢ X"

We select a domain D;", a set of objects W;, W, C D" that event ;' must write, and a set of
objects Cl’.c’ - D;Cl whose value needs to be corrected for events ef", e;“ in &1 — in the sense of
Definition 7.13. We distinguishing between several cases:

e i=00r0<i<len(v) and Rel] # wr and conflictsOf (v, i) # 0: In this case, we select ¢;' to

be a write event. If OpSpec only allows single-object atomic read-write events, we define
D;' = X'; while if not, we consider a domain containing o;’ , 0;', every object in X;" but
no object from X \Xix’ nor objects o}ql, 0 <j<len(v),l’ € {0,1}j # i — 1,i. Observe that by
Proposition B.10, such domain always exist on OpSpec.

If there is an unconditional write event whose domain is D!, we define W, = D;". Otherwise,
we define W, = X" U {0}"}.

0 < i < len(v), Rel} = wr and conflictsOf(v, i) # 0: In this case, by Proposition B.11, OpSpec
allows atomic read-write events. If OpSpec only allows single-object atomic read-write events,
we define D;" = Xl.x !; while if not, we consider a domain containing 0;_1, 0;, every object in
Xix’ but no object from X \ Xix’ nor objects 0;,0 < j < len(v), j # i — 1, i. Observe that by
Proposition B.10, such domain always exist on OpSpec.

Similarly to the previous case, if there is an unconditional atomic read-write event whose
domain is D;", we define W, = D;’. Otherwise, we define W, = X U {0;'}.

0 < i < len(v) and conflictsOf(v,i) = 0: In this case, by Proposition B.11, OpSpec allows
events that do not unconditionally write. If OpSpec allows read events that are not write
events, we select D' to be the domain of any such event and W, = 0. Otherwise, OpSpec
must allow conditional write events; so we select Df’ to be the domain of any such event,
W, = 0. Observe that in this case, thanks to the assumptions on OpSpec (see Section 7.4),
we can assume without loss of generality that whenever oﬁ € D;_q, oﬂ L € Df’ as well;
while otherwise, that X}, € D}".

Finally we describe the event ;' thanks to the sets D}’ and W;". If W;"! = D}’ and Rel} = wr, we
select an unconditional atomic read-write event whose domain is D;C’ JIf Wix’ = Dl’.c’ and Rel] # wr,
we select an unconditional write event whose domain is D}'. If W' = 0 and OpSpec allows read
events that are not write events, we select a read event whose domain is D;C’. Finally, if that is not
the case, we select a conditional write event ef’ s.t. obj(el’." )= D;” and s.t. an execution-corrector
exists for (e;”, Vl/ix’ s )?f’, i-lg ef‘) @ efl). Such event always exists by the assumptions on operation
specifications (Section 7.4). W.L.o.g. we can assume that ¢;" happens on replica r;".

For concluding the description of ' = (E;, so’, wr') and & = (h',rb’, ar’), we use an auxiliary
history and abstract execution, hi1 = (Ei1’ sol;l, wril) and §il = (h’;l, rbil, ar’;l) respectively. For
specifying wr' |, we define the context mapping c' : Objs — Contexts in the same fashion as in
Theorem B.9:

1

X1 — X1 i-1 i—1
ci (y) - (Fz (y)’ rb[Ffl(y)XFfl(y), ar rFfl(y)XFfl(y)) (60)
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where F;' (y) is the mapping associating each object y with the set of events described below:

ety (€€ B | wepec(e)(y [£71,CC]) Land (e,¢fy) € (b))} ifi=d,
i (y) = {e € E"' | wspec(e)(y, [£71,CC]) | and (e, €;”,) € (rb'™!)* }  otherwise

Then, we define §’_ | as the abstract execution of the history ht = (EL " soi_l, wrl ,) obtained by
appending €;°,€;" to h' | and &' | as follows: E' | contains E'~! and events €;", ¢;". First of all, we
require that the relations so’ |, wr’ , rb’  and ar’ | contain so’~?, wr™1, rb’~! and ar’~! respectively.

With respect to events el’.c”, e;”, we impose that e;” is the maximal event w.r.t. so’ | among
those on the same replica. Also, e;' is maximal w.r.t. wr as we define that for every object z,
((wrh))2) 7 (e}") = rspec(e]’)(z ¢;'(2)). We also require that rb’ | = so’ |. With respect to ar’ ,
we impose that ef" succeeds every event in El w.rt. arl , and that e;“ is the maximum event w.r.t.
arin &' .

We use & | to construct & If event ef’ is not a conditional write event, £ = & |- Otherwise, if
event e}’ is a conditional write event, given W, and object X", we select an execution-corrector
for e! w.r.t. (CC,OpSpec) and a;'. W.Lo.g., we assume that every event mapped by a;' happens
on replica r;". Observe that by the choice of sets D;’ and W;*, and thanks to the assumptions on
storages (see Section 7.4), such event(s) are always well-defined.

In addition, we denote by C;" to the set of objects we need to correct for ¢€;". More specifically,
if e} is a conditional write-read, we denote by C;' to the set of objects y s.t. a;' (y) is defined, i.e.
C;C’ = {y € Objs | afl (y) |}. In the case e;” is not a conditional write-read, we use the convention
Ci' = 0. The set of events in & is the following: E' = E'™' U Ujc o1y ({e;'} UyECi\{offl} a;' (y)).
Observe that by the choice of Cf’, the set E; is well-defined.

. ; ; seq(a;) .
From & |, we define & = £V e; as the corrected execution of ¢ and e;°, e}
a;’,a;'. For describing &, we consider < to be a well-founded order over Objs. ¢ satisfies the

following:

with events

e so’: Let y € C;'. We require that for every event e € E'™!, (e,a}'(y)) € so iff rep(e) =
ri’,0 < j < i. We also require that (init,a;'(y)) € so’ and (a;' (y), ;") € so’. Finally, we
require that for every objects y’ € C;',y’ <y, (a;' (y'), a;' (y)) € so'.

e wr': Let y be an object in C;'. For every object z, if z € C;' and z < y, we require
that (wr)™(a}' (y)) = rspec(a;’ (y))(z, ¢} (z) ® a;'(z)); while otherwise, we require that
(wr))"!(a;'(y)) = rspec(a;’(y))(z c;'(z)). We also require that for every object z, if
z € G, then (wrl)™(e]") = rspec(e;’)(z, ¢;' (z) & a;'(z)), while otherwise, (wrl) ' (e]') =
rspec(e;’)(z, ¢ (2)).

e rb’: Let y € C;". We require that for every object y € C;" and event e s.t. (e, a;' (y)) € so', s.t.
(e,a}'(y)) € so' Uwr', (e,a;'(y)) € rb'.

e ar’: We impose that for every event e € E'™!, (e,a;' (y)) € ar’,y € C;". We also require that
for every pair of objects y1,y» € C; s.t. y1,ya, (@) (y1), @' (y2)) € ar’. As a tie-breaker between
events associated to xo and x;, we require that for every pair of events e € {¢;°,a;"(y) | y €
CY e ef{e',al' (y) |y € C°}, (e,€') € ar’.

We then define k' = (E', so’, wr') and & = (h/, rb’, ar’). Observe that by construction of ' and
&, aswr' C rb* = s0’, they satisfy Definitions 3.2 and 3.4 respectively; so they are a history and an
abstract execution respectively. Also, observe that ¢ is the corrected abstract execution of &’ | for

5‘»“1(“2(1 ) seq(afo )

Xo X1 s Xo X1 (A R ] X1 i _ g X0
events e;°, e;' with events a;°,a;',ie. & =& =& v ¢, wheref=¢, Vv e

i
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Then, we define Events, = E'*"(®) a5 the set our program employs. The set Events,, induces the
set of traces 7j,.

We define the program P = (Sp,Ap, sg, Ap), where init, = init and A, is the transition function
defined as follows: for every trace t € 7, and event e € Events,, A,(t,e) | if and only if e ¢ ¢ and
every event in Events, whose replica coincide with e and has smaller identifier than e is included
in t.

The rest of the proof, which proceeds as follows, essentially combines previous results obtained
while proving Lemma 6.7 and Theorem B.9:

(1) There exists a finite trace t of P || Ir that contains no receive action (Lemma C.5)

(2) The trace t induces a history h, = (E, so, wr) and an abstract execution &, = (h, rb, ar) where
rb = so. As I is valid w.r.t. Spec, &, is valid w.r.t. Spec. Next, we prove that since rb = so,
events in &, read the latests value w.r.t. so for any object. In particular, we deduce that &, is
valid w.r.t. (CC, OpSpec) (Corollary D. 5)

(3) Since ar is a total order, either (e _,) €aror (e . ° _,) € ar. Wlo.g., assume that

(€ ey (s [& CMod]). The

proof is explalned in Flgure 9:if (e » 1 _) €ar, then all events e;° form a path in such

_pe
_,) € ar. By Proposition D. 6 we deduce that ¢ e’ € ctxtxo (e

way that vy, (e)°, ... e )) holds in §V If some event ;' is a Condltlonal read-write event,

len
the predicate conflicty (é ey n(V>) holds in &, thanks to the corrector events A;'.

(4) Ase)’ € ctxtxo(e] h(o)’ [g’;’v,CMod]) but (e;°, | n( )) ¢ rb (no message is received), we deduce
in Proposition B.16 that OpSpec is layered w.r.t. ar. By contrapositive, if OpSpec would

be layered w.r.t. rb, as eoo € ctxtxo(e[en(v), [, CMod]), there would exist an event e s.t.
(e0 ,e) Erbande € rspec(elen(v))(xo, [&,, CMod]). However, as rb = so, rep(eo") =rep(e) =
rep(e[en( ) len(v)) =r.

(5) Since rspec is maximally layered, we can show that the layer bound of rspec is smaller than
or equal to the number of arbitration-free suffixes of v (Proposition B.17). Observe that an
event writes xj only if it is init or is an event efl s.t. & € Ex and [ = 0. Any such index i
corresponds to a suffix of v. By causal suffix closure, for any arbitration-free suffix v” of v
there is a visibility formula that subsumes " in nCModopspec. As dy is the maximum index
for which Rel! = ar, the number of events writing x, in replica r; distinct from init coincide
with the number of arbitration-free suffixes of v. Hence, as rspec is layered wrt ar, if its

layer bound would be greater than the number of arbitration-free suffixes, e on(v) would

necessarily read x, from init (other events writing x, are in replica ry and e|en(v) only reads
from events in r1). However, as rspec is maximally-layered and ef)‘ succeeds init w.r.t. ar and

rb*, we would conclude that e ( ) would also read x from e,°. However, this is impossible

as wr C rb = so but ¢;” is in rephca ro and e

which is false because rep(e; ) = ry and rep(e

Ien( ) is in replica ry.
(6) Lastly, we show in Proposition B.18 that if the layer bound of rspec is smaller than or equal to
the number of arbitration-free suffixes of v, then v is vacuous w.r.t. OpSpec, which contradicts

the fact that v is a visibility formula from the normal form nCModopspec- ]

Proposition D.3. The abstract execution £"(*) described in Lemma 8.2 satisfies that for every
,0 <i<len(v),l€{0,1}:
(1) For every objecty € C;", the following conditions hold:
(a) For every object z € Objs, ifz € C;" and z < y, G(a;'(y),z) = F;'(2) U {a;'(2)}, while
otherwise, G(aff(y), z) = F'(2).
(b) The execution & | y is valid w.r.t. (CC, OpSpec).
(2) For the event e}, the following conditions hold:
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(a) Forevery objectz, ifz € C;',G(e}', z) = F;' (z) U{a;" (2)}, while otherwise G(e;", z) = F;" (z).
(b) The execution §l’ is valid w.r.t. (CC, OpSpec).

where ctxt (e, [‘flen(v): ccl) = (G(e, z), erG(e,z)xG(e,z)’ al’FG(e,z)xG(e,z))-

Proor. The proof of this result essentially coincides with that of Proposition B.12.

We prove the result by induction. In particular, we show that for every i,—1 < i < len(v) and
object y, either (0) i = —1 or (1) and (2) hold. The base case, i = —1, is immediate as (0) holds; so let
us suppose that the result holds for every j, -1 < j < i, and let us prove it for i.

For proving the inductive step, we first prove (1) for I = 0, then (2) for [ = 0, and then (1) and (2)
for I = 1. As both (1) and (2) have an identical proof (observe that the role of object y in the former
is just to declare that event a}' (y) is well-defined and the role of [ is to determine which session
must be proven first), we present only the proof of (1) for [ = 0.

We show (1) by transfinite induction. Let « be an ordinal of cardinality |Objs|. For every k, 0 <
k < a, we denote by Vi to the set containing the first k elements in Objs according to <. We show
that (1) holds for every y € Vi, N C;.

The base, V; is immediate as Vj = (0. We thus focus on the successor case (i.e., showing that if (1)
holds for every object y € Vi N C;* it also holds for Vi), as the limit case is immediate: if k is a
limit ordinal, Vi = UU; ;< Vi; so (1) immediately holds. For showing that (1) holds for every object
y € Vi1 N C°, as by induction hypothesis it holds for every object y € Vi N C;, it suffices to show
it for the only object y € Viy1 \ Vi. Wlo.g., we can assume that y € C;*; as otherwise the result is
immediate.

We first prove (la) and then we show (1b). Let z € Objs be an object. Two cases arise: z €
Ci,z < y or not. Both cases are identical, so we present the former, i.e., if z € C;‘O, z < y, then
F*(2) U{a;"(2)} = G(a;(y), 2).

For proving that F;* (z) U{a}" (z)} C G(a;"(y), z), we distinguish whether i = d, or not. However,
the proof essentially coincides in both cases, so we present the case i = d,. We split the proof in
two blocks: showing that F;*(z) € G(a;"(y), z) and showing that a}°(z) € G(a;(y), z).

For showing that Fix"(z) c G(af“(y),z), let e be an event in F;C"(z). In such case, e € EI°1,
wspec(e)(z, [£,CC]) | and (e, e’ € (rb’)*. By the construction of &, it is easy to see that any
such event belongs to E, wspec(e)(z, [£ CC]) | and (e, e’ € (rb'e"@)* As i = d,, we deduce
that (¢, @ (y)) € rb’ C rb*"(®) Hence, (e,a’(y)) € (rb"*"®))*; s0 e € G(a}*(y), z). This show
that F°(z) € G(a;"(y), 2).

X0

For showing that a’(z) € G(a°(y),z), we observe that & = & Vv . We note that
as z < y, by induction hypothesis (1b), & I z is valid w.r.t. (CC,OpSpec). Thus, by Prop-
erty 1 of Definition 7.13, wspec(a;(z))(z, [£},CC]) |. Hence, wspec(a;’ (z))(z, [&,cC]) | and
wspec(a®(2))(z, [£e"@), cC]) |. As z < y, (a]°(2),a}*(y)) € so' C s0'"(¥); so we conclude that
a;"(z) € G(a;"(y), 2).

We conclude the proof of the inductive step of (1a) by showing the converse ie. F;*(z) U
{a*(2)} 2 G(a;°(y),2). Let e € G(a;"(y),z). First of all, by the definition of Causal visibility
formula (see Figure 4b), e € G(a(y), z) iff wspec(e)(z [£CC]) | and (e,a*(y)) € (rblen@)*,
Observe that if (e, a;’(y)) € (rben@))* by construction of £#¢"(®), such event must belong to E’,
wspec(e)(z, [£,,CC]) | and (e, a;(y)) € (rb’)*. We prove that if e € E'"! then e € F*(z), while
otherwise, if e € E' \ E'"!, then e = a°(z).

Ife € E'!, as wspec(e)(z, [£',CC]) |, wspec(e)(z, [€71,CC]) |. Also, as i = d, and (e, a}°(y)) €
(rb')*, we deduce that (e,€]",) € (rb’™*)*. In other words, e € F,°(z).
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Otherwise, if e € E' \ E'™!, we note that by construction of £°"(®)  the only events in E* \ E'"! s.t.
X0

(e,a}’(y)) € (rb")* are events a;" (w), w € C;, w < y. As § = ﬁlseq(\?’ e’andz <y, & I zisvalid

w.r.t. (CC, OpSpec). Hence, wspec(e)(z, [£',CC]) | iff wspec(e)(z, [&, CC]) |. Thus, by Property 1

of Definition 7.13 we conclude that e = a;"(z).

For concluding the inductive step, we show that (1b) holds. This is immediate by the definition
of wri: for every event e € & | y, by induction hypothesis (1a) or (2a) — depending on whether
e= e}c' or a "(w), where 0 < j < i,w € C;,I’ € {0,1} — (wr');1(e) = rspec(e)(CC, [§l], My z]) =
rspec(e)(CC, [§l I'y,2]). Thus, & | y is valid w.r.t. (CC, OpSpec). O

A consequence of Proposition D.3 is the following result.
Corollary D.4. The abstract execution & described in Lemma 8.2 is valid w.r.t. (CC, OpSpec).

Corollary D.5 is an immediate result from Corollary D.4, obtained by simply observing that
rblen(@) = golen(®) = 56 = rh,

Corollary D.5. The abstract execution &, described in Lemma 8.2 is valid w.r.t. (CC, OpSpec).

Proposition D.6. For everyl € {0,1}, if(e;:_l, e;‘i’_’l) € ar, then the predicate vy, (e;', . .. ei:?ln(v))
holds in the abstract execution &€ = (h, rb, ar) described in Theorem B.9.

Proor. The proof of this result essentially coincides with that of Proposition B.14.
The proof is a simple consequence of £¢"(?)°s construction. To show that 0y, (€)', €lon (0))
holds in ¢, we ﬁrst show that for every i,1 < i < len(v), (¢;” |, €;"') € Rel} and to then prove that

wrCons} (e;’, ]en( )) holds in €.
We prove that for every i,1 < i < len(v), (e

-1
teel)e Relv Four cases arise depending on Rel}.

X
e Rel] = so: In this case, by construction of events er e , we know that r = rill. Hence,

i- 1’
(e x’) € 5o C so.

e Rel} = wr:In this case, we first show that there is an object y € D} "W, \C}", and then show
that (e}" 1, e;') € wry. For showing the first part, we distinguish between cases depending on
whether ol_1 € D;" or not.

- 0}’ € D}': In this sub-case, we show that y = 0;’,. On one hand, if conflictsOf (v, i) = 0

by the choice of event ef’, oﬁl € Dfﬁl \ C;”. On the other hand, if conflictsOf (v, i) # 0, as

', € D}, we deduce that OpSpec allows multi-object read-write events. Observe that as
v is conflict-maximal, conflictsOf (v, i — 1) # 0. Hence, as OpSpec allows multi-object read-
write events we deduce that 0}’ | € D}’ \ C}'. In both cases, as conflictsOf (v,i — 1) # 0
and 0}’ | € D}’ , by the choice of W;", we conclude that 0}’ € W, .

-0, sé sz In this case, we show that y = %;". On one hand, if conflictsOf (v, i) = 0, X" = 0;
S0 by the choice of X;" (see Equation (59)), ¥;' = X, ,. By the choice of D}’, X", € D' \ C;".
Moreover, as v 1s conﬂlct maximal, conﬂlctsOf(v i—1)#0;s0x% € X;— By the choice

of event ;' |, X}, C W,",. Altogether, we conclude that X' € W .

On the other hand, if confllctsOf(v, i) # 0, we note that fcf’ € Df’ \ Cf’. As ofﬁl ¢ Dfl, we
deduce that OpSpec only allows single-object read-write events. Thus, Dx’ = {)Ef’ }. Asvis
conflict-maximal, we deduce that Xl.x I c Xxl As by the choice of el X x’ 1 € Wi’ill, we
conclude that ;' € W, .

We prove now that (e;!,,e;') € wry. First, we show that e}’ | writes y in £&. On one hand, if

e, is an unconditional wr1te event, wspec(e;’ ) (y, ¢}’ (y)) l On the other hand, if ¢}" |

a conditional write event, as ¢ is valid w.r.t. (CC OpSpec) (Corollary D.5) and y € W'lx’ by
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Property 2 of Definition 7.13, we deduce that wspec(e;”,) (v, ¢;’ (y)) |. Then, as Rel! = wr,
i#d,, so efﬁl € F'(y). Observe that by construction of ¢, el’zl is the so-maximum event in
¢;'(y). As every event in F; (y) is so-related, we deduce that ¢;", is the ar-maximum event
in F" (y). We note that as y ¢ C;", by Proposition D.3, F;" (y) = G(e}, y). Altogether, ;" is
the ar-maximum event in ctxt, (e’ [£°"(®), CC]). As rb'"(®) = rb, we conclude that €’ is
the ar-maximum event in ctxty(e;’, [£,CC]). As rspec is maximally layered, we deduce that
eff L€ rspec(ef’)(y, [£ CC]). Finally, as ¢ is valid w.r.t. CC (Corollary D.5), we conclude that
(e}!,.ei) € wry.
e Rel] = rb: In this case, i # d,. Then, rb = so and (eﬁl, ef’) € so, we conclude that (e
rb.
e Rel{ = ar: On one hand, if i = d,, by hypothesis, (¢;",, e;') € ar. On the other hand, if i # d,,
(e;!,.e;') € so. Thus, (e, €;") € ar.
For showing that show that wrCons} (e, ... len(s)), We show that for every i,0 < i < len(v) and
every set E € conflictsOf(v, i), the event e;' writes on object yg’. If ¢} is an unconditional write,
by the choice of €}, it writes on every object in D}". As yg € D}, we conclude that e; writes on

. . seq(a;’)
yg. Otherwise, if ef’ is a conditional write, we observe that yg € Wix’. Hence,as & =&, v ef"
. . _ seq(a;!) )
and & is valid w.r.t. (CC,OpSpec) (resp. & = & v e and & is valid w.r.t. (CC, OpSpec))

(Proposition D.3), we deduce using Property 2 of Definition 7.13 that wspec(e;’) (yg, [¢',CC]) |. By
construction of £, we conclude that wspec(e;") (yg, [£,CC]) |. O

X1

x|
i€ ) €
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9For simplifying the proof, we abuse of notation and say that yg = xj if E = Ex. Observe that v is conflict-maximal, either
conflicty (Ex) or conflict (Ex) do not belong to v.
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